An Inspection Method of Rice Milling Degree Based on Machine Vision and Gray-Gradient Co-occurrence Matrix

نویسندگان

  • Peng Wan
  • Changjiang Long
چکیده

A detection method of the rice milling degree was proposed based on machine vision with gray-gradient co-occurrence matrix. Using an experimental mill machine, different milling degree samples of rice were prepared. The rice kernel image of the different milling degree was get by a machine vision detecting system, then the texture features of the rice image were obtained by using gray-gradient co-occurrence matrix, at last the Fisher discriminate functions constructed using stepwise discriminate analysis were used to detect the milling degree of the rice samples. The testing results show that the average accuracy rate of the different milling degree detected using the method of 4 rice samples is 94.00%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain

Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...

متن کامل

Digital Image Analysis Method for Rapid Measurement of Rice Degree of Milling

Cereal Chem. 75(3):380-385 A digital image analysis method was developed to quickly and accurately measure the degree of milling (DOM) of rice. The digital image analysis method was statistically compared to a chemical analysis method for evaluating DOM, which consisted of measuring the surface lipids concentration (SLC) of milled rice. The surface lipid area percentage (SLAP) obtained by the i...

متن کامل

A Study for Texture Feature Extraction of High-Resolution Satellite Images Based on a Direction Measure and Gray Level Co-Occurrence Matrix Fusion Algorithm

To address the problem of image texture feature extraction, a direction measure statistic that is based on the directionality of image texture is constructed, and a new method of texture feature extraction, which is based on the direction measure and a gray level co-occurrence matrix (GLCM) fusion algorithm, is proposed in this paper. This method applies the GLCM to extract the texture feature ...

متن کامل

Vision based vehicle detection with occlusion handling

In recent years, automotive manufacturers have equipped their vehicles with innovative Advanced Driver Assistance Systems (ADAS) to ease driving and avoid dangerous situations, such as unintended lane departures or collisions with other road users, like vehicles and pedestrians. To this end, ADAS at the cutting edge are equipped with cameras to sense the vehicle surrounding. This dissertation i...

متن کامل

A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle

In this study, we present an application of neural network and image processing techniques for detecting the defects of an internal micro-spray nozzle. The defect regions were segmented by Canny edge detection, a randomized algorithm for detecting circles and a circle inspection (CI) algorithm. The gray level co-occurrence matrix (GLCM) was further used to evaluate the texture features of the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010