An experimental investigation of the planar turbulent wake in constant pressure gradient

نویسندگان

  • Xiaofeng Liu
  • Robert C. Nelson
چکیده

This paper describes an experimental investigation into the development of a planar turbulent wake under constant adverse and favorable pressure gradient conditions. The focus of the study is on the near-wake due to its relevance to high-lift systems for commercial transport aircraft. The wake is generated by a flat splitter plate with tapered trailing edge. The pressure gradients are imposed as the wake passes through a wind tunnel diffuser test section with fully adjustable top and bottom wall contours. The streamwise pressure gradients imposed on the wake flow field are held constant in each case. The wake initial conditions are maintained identical upstream of the location where the pressure gradient is first imposed. The use of constant pressure gradients, coupled with identical initial conditions, facilitates isolation of the effect of streamwise pressure gradients on the near-field evolution of the wake and provides a clean test case for computational models. In this paper we focus on characterizing the mean flow widening, streamwise velocity defect variation, and the streamwise evolution of turbulence statistics for both favorable and adverse streamwise pressure gradients. The imposed pressure gradients are shown to have a very significant effect on both the mean and turbulent flow quantities. © 2002 American Institute of Physics. #DOI: 10.1063/1.1490349$

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Study of Vortex Shapes behind a Wing Equipped with Different Winglets

An extensive experimental study is conducted to examine effects of different winglet-shapes and orientations on the vortex behind a wing, static surface pressure over the wing, and wing wake of a swept wing at various angles of attack. Four types of winglets, spiroid (forward and aft), blended, and winggrid are used in this investigation. Wing static surface pressure measurements are obtained f...

متن کامل

Verification of a CFD solver in near ground effect for aerodynamic behavior of airfoil NACA 0015

Numerical investigation was performed on NACA 0015 which is a symmetric airfoil. Pressure distribution and then lift and drag forces are verified. Changing of ground clearance was a considerable point. Also the angle of attack was changed from 0° to 10°. Pressure coefficient reaches its higher amounts on the wing lower surface when the ground clearance diminishes. Increment of the angle of atta...

متن کامل

Constant adverse pressure gradient turbulent boundary layers

Significant progress has been made towards understanding the large scale features of wall-bounded shear flow in zero pressure gradient (ZPG) turbulent boundary layers (TBL). Here we consider their effects in adverse pressure gradient (APG) flows where the pressure gradient parameter is held constant and Reynolds number is varied. This is done by documenting the changes in the mean velocity, str...

متن کامل

Numerical Modeling of the Stepped Planing Hull in Calm Water

This article describes a 3D CFD (computational fluid dynamics) simulation implementation of the stepped planning hull in calm water. The turbulent free surface flow around the stepped planing hull is computed with a RANSE method, using the solver ANSYS-CFX. The turbulence model used is standard k–ε. In order to simulate the disturbed free surface, VOF model is implemented. The CFD model has bee...

متن کامل

Turbulent Drag Reduction by Spanwise Wall Oscillations

The objective of this paper is to examine the effectiveness of wall oscillation as a control scheme of drag reduction. Two flow configurations are considered: constant flow rate and constant mean pressure gradient. The Navier-Stokes equations are solved using Fourier-Chebyshev spectral methods and the oscillation in sinusoidal form is enforced on the walls through boundary conditions for the sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008