A cyclic projected gradient method

نویسندگان

  • Simon Setzer
  • Gabriele Steidl
  • Jan Morgenthaler
چکیده

In recent years, convex optimization methods were successfully applied for various image processing tasks and a large number of first-order methods were designed to minimize the corresponding functionals. Interestingly, it was shown recently in [25] that the simple idea of so-called “superstep cycles” leads to very efficient schemes for time-dependent (parabolic) image enhancement problems as well as for steady state (elliptic) image compression tasks. The “superstep cycles” approach is similar to the nonstationary (cyclic) Richardson method which has been around for over sixty years. In this paper, we investigate the incorporation of superstep cycles into the projected gradient method. We show for two problems in compressive sensing and image processing, namely the LASSO approach and the Rudin-Osher-Fatemi model that the resulting simple cyclic projected gradient algorithm can numerically compare with various state-of-the-art first-order algorithms. However, due to the nonlinear projection within the algorithm convergence proofs even under restrictive assumptions on the linear operators appear to be hard. We demonstrate the difficulties by studying the simplest case of a two-cycle algorithm in R2 with projections onto the Euclidean ball.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Projected Gradient Method for a High-order Model in Image Restoration Problems

Based on the augmented Lagrangian strategy, we propose a projected gradient method for solving the high-order model in image restoration problems. Based on the Bermùdez and Moreno (BM) algorithm, the convergence of the proposed method is proved. We also give the relationship that the semi-implicit gradient descent method can be deduced from the projected gradient method. Some numerical experime...

متن کامل

Universidad Central de Venezuela

A study of the convergence properties of spectral projected subgradient method is presented and the convergence is shown. The convergence is based on spectral projected gradient approach. Some updates of the spectral projected subgradient are described.

متن کامل

Non-negative Matrix Factorization Based on Projected Nonlinear Conjugate Gradient Algorithm

The popular multiplicative algorithms in non-negative matrix factorization (NMF) are known to have slow convergence. Several algorithms have been proposed to improve the convergence of iterative algorithms in NMF, such as the projected gradient algorithms. However, these algorithms also suffer a common problem, that is, a previously exploited descent direction may be searched again in subsequen...

متن کامل

Practical active-set Euclidian trust-region method with spectral projected gradients for bound-constrained minimization

A practical active-set method for bound-constrained minimization is introduced. Within the current face the classical Euclidian trust-region method is employed. Spectral projected gradient directions are used to abandon faces. Numerical results are presented.

متن کامل

Spectral Projected Gradient Method on Convex Sets 227 3 . New Algorithm

The spectral gradient method has proved to be effective for solving large-scale unconstrained optimization problems. It has been recently extended and combined with the projected gradient method for solving optimization problems on convex sets. This combination includes the use of nonmonotone line search techniques to preserve the fast local convergence. In this work we further extend the spect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2013