Differential Geometric Aspects of Alexandrov Spaces
نویسنده
چکیده
We summarize the results on the differential geometric structure of Alexandrov spaces developed in [Otsu and Shioya 1994; Otsu 1995; Otsu and Tanoue a]. We discuss Riemannian and second differentiable structure and Jacobi fields on Alexandrov spaces of curvature bounded below or above.
منابع مشابه
Topological regularity theorems for Alexandrov spaces
Since Gromov gave in [G1], [G2] an abstract definition of Hausdorff distance between two compact metric spaces, the Gromov-Hausdorff convergence theory has played an important role in Riemannian geometry. Usually, Gromov-Hausdorff limits of Riemannian manifolds are almost never Riemannian manifolds. This motivates the study of Alexandrov spaces which are more singular than Riemannian manifolds ...
متن کاملSynthetic Geometry and Generalised Functions
We review some aspects of the geometry of length spaces and metric spaces, in particular Alexandrov spaces with curvature bounded below and/or above. We then point out some possible directions of research to explore connections between the synthetic approach to Riemannian geometry and some aspects of the approach to non-smooth differential geometry through generalised functions. AMS Mathematics...
متن کاملOn the Cut Locus in Alexandrov Spaces and Applications to Convex Surfaces
Alexandrov spaces are a large class of metric spaces that includes Hilbert spaces, Riemannian manifolds and convex surfaces. In the framework of Alexandrov spaces, we examine the ambiguous locus of analysis and the cut locus of differential geometry, proving a general bisecting property, showing how small the ambiguous locus must be, and proving that typically the ambiguous locus and a fortiori...
متن کاملA Radius Sphere Theorem
The purpose of this paper is to present an optimal sphere theorem for metric spaces analogous to the celebrated Rauch-Berger-Klingenberg Sphere Theorem and the Diameter Sphere Theorem in riemannian geometry. There has lately been considerable interest in studying spaces which are more singular than riemannian manifolds. A natural reason for doing this is because Gromov-Hausdorff limits of riema...
متن کاملOn the category of geometric spaces and the category of (geometric) hypergroups
In this paper first we define the morphism between geometric spaces in two different types. We construct two categories of $uu$ and $l$ from geometric spaces then investigate some properties of the two categories, for instance $uu$ is topological. The relation between hypergroups and geometric spaces is studied. By constructing the category $qh$ of $H_{v}$-groups we answer the question...
متن کامل