Importance-weighted covariance estimation for robust common spatial pattern

نویسندگان

  • Alessandro Balzi
  • Florian Yger
  • Masashi Sugiyama
چکیده

Robustness for BCI is usually obtained at the classifier level Non-stationarity is inherent to brain signals We propose to leverage this at the feature extraction level

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Spatial Covariance Matrix Estimation for MUSIC Based TDOA Estimation of Speech Source

We study the estimation of time difference of arrival (TDOA) under noisy and reverberant conditions. Conventional TDOA estimation methods such as MUltiple SIgnal Classification (MUSIC) are not robust to noise and reverberation due to the distortion in the spatial covariance matrix (SCM). To address this issue, this paper proposes a robust SCM estimation method, called weighted SCM (WSCM). In th...

متن کامل

Estimating Spatial Covariance using Penalized Likelihood with Weighted L1 Penalty

In spatial statistics, estimation of large covariance matrices are of great importance because of their role in spatial prediction and design. The traditional approaches typically assume that the spatial process is stationary, the covariance function takes some well known parametric form, and estimates the parameters of the covariance functions using likelihood based methods. In this paper we p...

متن کامل

Spatial Heteroskedasticity and Autocorrelation Consistent Estimation of Covariance Matrix

This paper considers spatial heteroskedasticity and autocorrelation consistent (spatial HAC) estimation of covariance matrices of parameter estimators. We generalize the spatial HAC estimators introduced by Kelejian and Prucha (2007) to apply to linear and nonlinear spatial models with moment conditions. We establish its consistency, rate of convergence and asymptotic truncated mean squared err...

متن کامل

Comparison of the Performance of Geographically Weighted Regression and Ordinary Least Squares for modeling of Sea surface temperature in Oman Sea

In Marine discussions, the study of sea surface temperature (SST) and study of its spatial relationships with other ocean parameters are of particular importance, in such a way that the accurate recognition of the SST relationships with other parameters allows the study of many ocean and atmospheric processes. Therefore, in this study, spatial relations modeling of SST with Surface Wind Speed (...

متن کامل

Robust Decentralized Data Fusion Based on Internal Ellipsoid Approximation

Based on M-estimate, the problem of robust estimation fusion in decentralized architecture when the sensor noises are contaminated by outliers is considered. A simple robust Kalman filtering (RKF) scheme with weighted matrices of innovation sequences is introduced for local state estimation. Then, to avoid both the inconsistency of the Kalman filter and the performance conservation of the covar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2015