Projectively equivariant quantization and symbol calculus: noncommutative hypergeometric functions
نویسندگان
چکیده
We extend projectively equivariant quantization and symbol calculus to symbols of pseudo-differential operators. An explicit expression in terms of hypergeometric functions with noncommutative arguments is given. Some examples are worked out, one of them yielding a quantum length element on S3.
منابع مشابه
Cartan Connections and Natural and Projectively Equivariant Quantizations
In this paper, we analyse the question of existence of a natural and projectively equivariant symbol calculus, using the theory of projective Cartan connections. We establish a close relationship between the existence of such a natural symbol calculus and the existence of an sl(m+1,R)equivariant calculus over R in the sense of [15, 1]. Moreover we show that the formulae that hold in the non-cri...
متن کاملNatural and Projectively Equivariant Quantizations by Means of Cartan Connections
The existence of a natural and projectively equivariant quantization in the sense of Lecomte [20] was proved recently by M. Bordemann [4], using the framework of Thomas-Whitehead connections. We give a new proof of existence using the notion of Cartan projective connections and we obtain an explicit formula in terms of these connections. Our method yields the existence of a projectively equivar...
متن کاملExistence of Natural and Projectively Equivariant Quantizations
We study the existence of natural and projectively equivariant quantizations for differential operators acting between order 1 vector bundles over a smooth manifold M . To that aim, we make use of the Thomas-Whitehead approach of projective structures and construct a Casimir operator depending on a projective Cartan connection. We attach a scalar parameter to every space of differential operato...
متن کاملProjective Connections and the Algebra of Densities
Projective connections first appeared in Cartan’s papers in the 1920’s. Since then they have resurfaced periodically in, for example, integrable systems and perhaps most recently in the context of so called projectively equivariant quantisation. We recall the notion of projective connection and describe its relation with the algebra of densities on a manifold. In particular, we construct a Lapl...
متن کاملOn Natural and Conformally Equivariant Quantizations
The concept of conformally equivariant quantizations was introduced by Duval, Lecomte and Ovsienko in [8] for manifolds endowed with flat conformal structures. They obtained results of existence and uniqueness (up to normalization) of such a quantization procedure. A natural generalization of this concept is to seek for a quantization procedure, over a manifold M , that depends on a pseudo-Riem...
متن کامل