Discovering Sparse Functional Brain Networks Using Group Replicator Dynamics (GRD)

نویسندگان

  • Bernard Ng
  • Rafeef Abugharbieh
  • Martin J. McKeown
چکیده

Functional magnetic resonance imaging (fMRI) has become increasingly used for studying functional integration of the brain. However, the large inter-subject variability in functional connectivity renders detection of representative group networks very difficult. In this paper, we propose a new iterative method that we refer to as "group replicator dynamics," for detecting sparse functional networks that are common across subjects within a group. The proposed method uses replicator dynamics, which we show to be equivalent to non-negative sparse PCA, and incorporates group information for identifying common networks across subjects with subject-specific weightings of the identified brain regions reflecting individual differences. Finding a separate network for each subject, as opposed to employing traditional averaging approaches, permits statistical testing of group significance. We validated our method on synthetic data, and applying it to real fMRI data detected task-specific group networks that conform well with prior neuroscience knowledge.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overlapping Replicator Dynamics for Functional Subnetwork Identification

Functional magnetic resonance imaging (fMRI) has been widely used for inferring brain regions that tend to work in tandem and grouping them into subnetworks. Despite that certain brain regions are known to interact with multiple subnetworks, few existing techniques support identification of subnetworks with overlaps. To address this limitation, we propose a novel approach based on replicator dy...

متن کامل

Meta-analysis of functional imaging data using replicator dynamics.

Despite the rapidly growing number of meta-analyses in functional neuroimaging, the field lacks formal mathematical tools for the quantitative and qualitative evaluation of meta-analytic data. We propose to use replicator dynamics in the meta-analysis of functional imaging data to address an important aspect of neuroimaging research, the search for functional networks of cortical areas that und...

متن کامل

Functional Segmentation of fMRI Data Using Adaptive Non-negative Sparse PCA (ANSPCA)

We propose a novel method for functional segmentation of fMRI data that incorporates multiple functional attributes such as activation effects and functional connectivity, under a single framework. Similar to PCA, our method exploits the structure of the correlation matrix but with neighborhood information adaptively integrated to encourage detection of spatially contiguous clusters yet without...

متن کامل

Evaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions

Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...

متن کامل

Disrupted Brain Functional Organization in Epilepsy Revealed by Graph Theory Analysis

The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age- and gender-matched healthy controls. A brain funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Information processing in medical imaging : proceedings of the ... conference

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2009