A molecular switch underlies a human telomerase disease.

نویسندگان

  • Luis R Comolli
  • Ivan Smirnov
  • Lifeng Xu
  • Elizabeth H Blackburn
  • Thomas L James
چکیده

Telomerase is a ribonucleoprotein (RNP) required for maintenance of telomeres. Although up-regulated telomerase activity is closely linked to the cellular immortality characteristic of late stage carcinogenesis, recently, mutations in the telomerase RNA gene in humans have been associated with dyskeratosis congenita and aplastic anemia, both typified by impaired haemopoietic function. These mutations include base changes in a highly conserved putative telomerase RNA pseudoknot. Here, by using in vitro telomerase assays, NMR, and UV absorbance melting analyses of model oligonucleotides designed to form a "trans-pseudoknot," we describe functional, structural, and energetic properties of this structure. We demonstrate that the pseudoknot domain exists in two alternative states of nearly equal stability in solution: one is the previously proposed pseudoknot formed by pairing P3 with the loop domain of P2b, and the other is a structured P2b loop alone. We show that the two-base mutation (GC1078 --> AG) present in one gene copy in a family with dyskeratosis congenita abrogates telomerase activity. This mutation hyperstabilizes the P2b intraloop structure, blocking pseudoknot formation. Conversely, when the P3 pseudoknot pairing is hyperstabilized by deleting a conserved bulge in P3, telomerase activity also decreases. We propose that the P2bP3 pseudoknot domain acts as a molecular switch, and interconversion between its two states is important for telomerase function. Phylogenetic covariation in the P2b and P3 sequences of 35 species provides a compelling set of "natural" compensatory base pairing changes supporting the existence of the crucial molecular switch.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression Pattern of Alternative Splicing Variants of Human Telomerase Reverse Transcriptase (hTERT) in Cancer Cell Lines Was not Associated with the Origin of the Cells

Telomerase and systems controlling their activity have been of great attention. There are controversies regarding the role of the alternative splicing forms of the human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase. Therefore, the correlation between telomerase enzyme activity, the abundance of alternatively spliced variants of hTERT and doubling time of a seri...

متن کامل

Expression Pattern of Telomerase Reverse Transcriptase (hTERT) Variants and Bcl-2 in Peripheral Lymphocytes of Systemic Lupus Erythematosus Patients

Background & Objective: It is not clear whether activated lymphocytes of patients with systemic lupus erythematosus (SLE) are more proliferative or less apoptotic. We aimed to delineate potential differences between B and T cells of SLE patients compared to healthy controls regarding the telomerase activity and apoptosis status. Methods: In this cross-sec...

متن کامل

Nanocurcumin-Mediated Down-Regulation of Telomerase Via Stimulating TGFβ1 Signaling Pathway in Hepatocellular Carcinoma Cells

Background: Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and transforming growth factor-β1 (TGFβ1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomeras...

متن کامل

The Influence of Iron Loading and Iron Chelation on the Proliferation and Telomerase Activity of Human Peripheral Blood Mononuclear Cells

Background: Iron is an essential trace element in cell proliferation. Several investigations demonstrate that iron deprivation inhibits cell proliferation. However, the impact of iron on telomerase activity of activated lymphocytes remains unexplained to date. Objective: In this study, the effect of iron on the proliferation and telomerase activity of lymphocytes stimulated by phytohemagglutini...

متن کامل

Switch telomerase to ALT mechanism by inducing telomeric DNA damages and dysfunction of ATRX and DAXX

Activation of telomerase or alternative lengthening of telomeres (ALT) is necessary for tumours to escape from dysfunctional telomere-mediated senescence. Anti-telomerase drugs might be effective in suppressing tumour growth in approximately 85-90% of telomerase-positive cancer cells. However, there are still chances for these cells to bypass drug treatment after switching to the ALT mechanism ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 26  شماره 

صفحات  -

تاریخ انتشار 2002