Robust and Efficient Wave Simulations on Deforming Meshes

نویسندگان

  • Roland Angst
  • Nils Thürey
  • Mario Botsch
  • Markus H. Gross
چکیده

The goal of this paper is to enable the interactive simulation of phenomena such as animated fluid characters. While full 3D fluid solvers achieve this with control algorithms, these 3D simulations are usually too costly for real-time environments. In order to achieve our goal, we reduce the problem from a threeto a two-dimensional one, and make use of the shallow water equations to simulate surface waves that can be solved very efficiently. In addition to a low runtime cost, stability is likewise crucial for interactive applications. Hence, we make use of an implicit time integration scheme to obtain a robust solver. To ensure a low energy dissipation, we apply an Implicit Newmark time integration scheme. We propose a general formulation of the underlying equations that is tailored towards the use with an Implicit Newmark integrator. Furthermore, we gain efficiency by making use of a direct solver. Due to the generality of our formulation, the fluid simulation can be coupled interactively with arbitrary external forces, such as forces caused by inertia or collisions. We will discuss the properties of our algorithm, and demonstrate its robustness with simulations on strongly deforming meshes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Elasticity for Mesh Deformation with High-Order Discontinuous Galerkin Methods for the Navier-Stokes Equations on Deforming Domains

We present a numerical framework for simulation of the compressible Navier-Stokes equations on problems with deforming domains where the boundary motion is prescribed by moving meshes. Our goal is a high-order accurate, efficient, robust, and general purpose simulation tool. To obtain this, we use a discontinuous Galerkin space discretization, diagonally implicit Runge-Kutta time integrators, a...

متن کامل

A Semi-Lagrangian Closest Point Method for Deforming Surfaces

We present an Eulerian method for the real-time simulation of intrinsic fluid dynamics effects on deforming surfaces. Our method is based on a novel semi-Lagrangian closest point method for the solution of partial differential equations on animated triangle meshes. We describe this method and demonstrate its use to compute and visualize flow and wave propagation along such meshes at high resolu...

متن کامل

Animation Model Simplifications

In this paper, we propose a new framework for the representation of deforming meshes by only updating necessary changes of the connectivity. The deforming meshes, which is also known as time-varying surfaces, are often constructed with static connectivity. To progressively represent the deforming meshes with level-of-details, people can simplify the meshes independently to obtain good simplific...

متن کامل

Solution of the Unsteady Discrete Adjoint for Three-Dimensional Problems on Dynamically Deforming Unstructured Meshes

The formulation and solution of the adjoint problem for unsteady flow simulations using the Reynolds-averaged Navier-Stokes equations in the presence of dynamically deforming unstructured meshes is demonstrated. A discrete adjoint approach is used, and the full linearization is built up in a systematic and modular fashion. Discrete conservation in the analysis problem is ensured through the geo...

متن کامل

Geometric Conservation Law and Finite Element Methods for 3-D Unsteady Simulations of Incompressible Flow

This paper takes a fresh look at the Geometric Conservation Law (GCL) from the perspective of Arbitrary Lagrangian Eulerian (ALE) finite element methods for solving 3-D incompressible viscous flows problems on deforming domain. GCL compliance is traditionally interpreted as a consistency criterion for applying an unsteady flow solution algorithm to simulate exactly a uniform flow on a deforming...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2008