Unsupervised Hyperspectral Image Analysis with Projection Pursuit and MRF Segmentation Approach
نویسندگان
چکیده
This work deals with hyperspectral image analysis in the absence of ground-truth. The method adopts a projection pursuit (PP) procedure with entropy index to reduce the dimensionality followed by Markov Random Field (MRF) model based segmentation. Ordinal optimization approach to PP determines a set of “ good enough projections” with high probability the best among which is chosen with the help of MRF model based segmentation. The segmented output so obtained is labeled with desired number of landcover classes in the absence of ground-truth. While comparing with original hyperspectral image the methodology outperforms principal component analysis with respect to class separation as exhibited in the illustration of an archive EO-1 hyperspectral image. The technique is not a computational intensive as is usually the case in hyperspectral image analysis. When training samples are available, the segmented regions yields a classified image with any cluster validation technique
منابع مشابه
Hyperspectral Image Analysis with Projection Pursuit and MRF Segmentation Approach – Unsupervised and Supervised
This work proposes methods for hyperspectral image analysis in both situations viz., (i) when concurrent groundtruth is unavailable and (ii) when available. The method adopts a projection pursuit (PP) procedure with entropy index to reduce the dimensionality followed by Markov Random Field (MRF) model based segmentation. Ordinal optimization approach to PP determines a set of “good enough proje...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملPerformance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation
Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...
متن کاملUnsupervised hyperspectral image analysis with projection pursuit
Principal components analysis (PCA) is effective at compressing information in multivariate data sets by computing orthogonal projections that maximize the amount of data variance. Unfortunately, information content in hyperspectral images does not always coincide with such projections. We propose an application of projection pursuit (PP), which seeks to find a set of projections that are “inte...
متن کامل