Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction
نویسندگان
چکیده
11 A new scheme based on multi-objective hierarchical genetic algorithm (MOHGA) is proposed to extract interpretable rule-based knowledge from data. The approach is derived from the use of multiple objective genetic 13 algorithm (MOGA), where the genes of the chromosome are arranged into control genes and parameter genes. These genes are in a hierarchical form so that the control genes can manipulate the parameter genes in a more 15 effective manner. The effectiveness of this chromosome formulation enables the fuzzy sets and rules to be optimally reduced. Some important concepts about the interpretability are introduced and the fitness function in the MOGA 17 will consider both the accuracy and interpretability of the fuzzy model. In order to remove the redundancy of the rule base proactively, we further apply an interpretability-driven simplification method to newborn individuals. In 19 our approach, we first apply the fuzzy clustering to generate an initial rule-based model. Then the multi-objective hierarchical genetic algorithm and the recursive least square method are used to obtain the optimized fuzzy models. 21 The accuracy and the interpretability of fuzzy models derived by this approach are studied and presented in this paper. We compare our work with other methods reported in the literature on four examples: a synthetic nonlinear 23 dynamic system, a nonlinear static system, the Lorenz system and the Mackey–Glass system. Simulation results show that the proposed approach is effective and practical in knowledge extraction. 25 © 2004 Published by Elsevier B.V.
منابع مشابه
SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملSUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملOn the Usefulness of MOEAs for Getting Compact FRBSs Under Parameter Tuning and Rule Selection
In the last years, multi-objective genetic algorithms have been successfully applied to obtain Fuzzy Rule-Based Systems satisfying different objectives, usually different performance measures. Recently, multi-objective genetic algorithms have been also applied to improve the difficult trade-off between interpretability and accuracy of Fuzzy Rule-Based Systems, obtaining linguistic models not on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fuzzy Sets and Systems
دوره 149 شماره
صفحات -
تاریخ انتشار 2005