Dendritic spine plasticity in gonadatropin-releasing hormone (GnRH) neurons activated at the time of the preovulatory surge.

نویسندگان

  • Heidi Chan
  • Melanie Prescott
  • ZhiYi Ong
  • Michel K Herde
  • Allan E Herbison
  • Rebecca E Campbell
چکیده

GnRH neuron activity is dependent on gonadal steroid hormone feedback. Altered synaptic input may be one mechanism by which steroids modify GnRH neuron activity. In other neuronal populations, steroid hormones have been shown to elicit profound effects on dendritic spine density, a measure of excitatory synaptic input. The present study examined gonadal steroid feedback effects on GnRH neuron spine density in female GnRH-green fluorescent protein (GFP) mice. Immunocytochemical labeling of GFP in this model reveals fine morphological details of GnRH neurons. Spine density and other features were quantified by confocal analysis. Ovariectomy resulted in a significant reduction in somatic spine density (27%, P < 0.05) compared with sham-operated diestrous females. However, dendritic spine density was unaltered. Positive feedback effects of estradiol on spine density were investigated using a protocol to mimic the GnRH/LH surge. Ten GnRH-GFP mice underwent an established protocol, receiving either estradiol benzoate (1 μg per 20 g body weight) or vehicle (n = 5/group) 32 h prior to being killed during the expected surge. Double-label immunofluorescence showed that all estradiol-treated females expressed cFos in a subpopulation of GnRH neurons. Spine density was determined by confocal analysis of activated (cFos-positive, n = 10 neurons/animal) and nonactivated (cFos-negative, n = 10 neurons/animal) GnRH neurons from estradiol-treated animals and for GnRH neurons (n = 20 neurons/animal) from nonsurged controls (all cFos negative). Activated GnRH neurons (cFos positive) showed a dramatic 60% increase in total spine density (0.78 ± 0.06 spines/μm) compared with nonactivated GnRH neurons (0.50 ± 0.01 spines/μm) in estradiol-treated animals (P < 0.001). Both somatic and dendritic spine density was significantly increased. Spine density was not different between nonactivated GnRH neurons from surged animals (0.50 ± 0.01 spines/μm) and GnRH neurons from nonsurged animals (0.51 ± 0.06 spines/μm). These data demonstrate that positive feedback levels of estradiol stimulate a robust increase in spine density specifically in those GnRH neurons that are activated at the time of the GnRH/LH surge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge.

Kisspeptins are neuropeptides encoded by the Kiss1 gene, which have been implicated in the neuroendocrine regulation of gonadotropin-releasing hormone (GnRH) secretion. The goal of this study was to test the hypothesis that activation of Kiss1 neurons in the anteroventral periventricular nucleus (AVPV) is linked to the induction of the preovulatory luteinizing hormone (LH) surge in the rat. Fir...

متن کامل

Phasic synaptic incorporation of GluR2-lacking AMPA receptors at gonadotropin-releasing hormone neurons is involved in the generation of the luteinizing hormone surge in female rats

Reproductive success depends on a robust and appropriately timed preovulatory luteinizing hormone (LH) surge, which is induced by the activation of gonadotropin-releasing hormone (GnRH) neurons in response to positive feedback from increasing estrogen levels. Here we document an increase in postsynaptic GluR2-lacking Ca2+ -permeable AMPA-type glutamate receptors (CP-AMPARs) at synapses on GnRH ...

متن کامل

Decoding high Gonadotropin-releasing hormone pulsatility: a role for GnRH receptor coupling to the cAMP pathway?

The gonadotropin-releasing hormone (GnRH) pulsatile pattern is critical for appropriate regulation of gonadotrope activity but only little is known about the signaling mechanisms by which gonadotrope cells decode such pulsatile pattern. Here, we review recent lines of evidence showing that the GnRH receptor (GnRH-R) activates the cyclic AMP (cAMP) pathway in gonadotrope cells, thus ending a lon...

متن کامل

Intermediary role of kisspeptin in the stimulation of gonadotropin-releasing hormone neurons by estrogen in the preoptic area of sheep brain

Introduction: The role of estrogen in the stimulation of gonadotropin-releasing hormone (GnRH) neurons is clear. These neurons do not express estrogen alpha receptors, so other mediator neurons should be present to transmit the positive feedback effect of estrogen to the GnRH neurons. Kisspeptin neurons have an important role in the stimulation of GnRH neurons, so they can be the mediator of...

متن کامل

Analysis of multiple positive feedback paradigms demonstrates a complete absence of LH surges and GnRH activation in mice lacking kisspeptin signaling.

Kisspeptin stimulates gonadotropin-releasing hormone (GnRH) neurons via the kisspeptin receptor, Kiss1r. In rodents, estrogen-responsive kisspeptin neurons in the rostral hypothalamus have been postulated to mediate estrogen-induced positive feedback induction of the preovulatory luteinizing hormone (LH) surge. However, conflicting evidence exists regarding the ability of mice lacking Kiss1r to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Endocrinology

دوره 152 12  شماره 

صفحات  -

تاریخ انتشار 2011