North America ’ s net terrestrial CO 2 exchange with the atmosphere 1990 – 2009
نویسندگان
چکیده
Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from −890 to −280 Tg C yr, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, “best” estimates (i.e., measures of central tendency) are −472± 281 Tg C yr based on the mean and standard deviation of the distribution and −360 Tg C yr (with an interquartile range of −496 to −337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America’s mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr and assuming the estimate of −472 Tg C yr as an approximation of the true terrestrial CO2 sink, the continent’s source : sink ratio for this time period was 1720 : 472, or nearly 4 : 1.
منابع مشابه
North America ’ s net terrestrial carbon exchange with the atmosphere 1990 – 2009
Introduction Conclusions References
متن کاملAn atmospheric perspective on North American carbon dioxide exchange: CarbonTracker.
We present an estimate of net CO(2) exchange between the terrestrial biosphere and the atmosphere across North America for every week in the period 2000 through 2005. This estimate is derived from a set of 28,000 CO(2) mole fraction observations in the global atmosphere that are fed into a state-of-the-art data assimilation system for CO(2) called CarbonTracker. By design, the surface fluxes pr...
متن کاملTropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984-2000.
During 1984-2000, canopy tree growth in old-growth tropical rain forest at La Selva, Costa Rica, varied >2-fold among years. The trees' annual diameter increments in this 16-yr period were negatively correlated with annual means of daily minimum temperatures. The tree growth variations also negatively covaried with the net carbon exchange of the terrestrial tropics as a whole, as inferred from ...
متن کاملCarbon in catchments: connecting terrestrial carbon losses with aquatic metabolism
For a majority of aquatic ecosystems, respiration ( R ) exceeds autochthonous gross primary production (GPP). These systems have negative net ecosystem production ([NEP] = [GPP] – R ) and ratios of [GPP]/ R of <1. This net heterotrophy can be sustained only if aquatic respiration is subsidized by organic inputs from the catchment. Such subsidies imply that organic materials that escaped decompo...
متن کاملThe First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle
PB 103 The six chapters (Chapters 10-15) in Part III consider the current and future carbon balance of terrestrial and aquatic ecosystems in North America. Although the amount of carbon exchanged between these ecosystems and the atmosphere each year through photosynthesis and plant and microbial respiration is large, the net balance for all of the ecosystems combined is currently a net sink of ...
متن کامل