α-pinene photooxidation under controlled chemical conditions – Part 1: Gas-phase composition in low- and high-NOx environments
نویسندگان
چکیده
The OH oxidation of α-pinene under both lowand high-NOx environments was studied in the Caltech atmospheric chambers. Ozone was kept low to ensure OH was the oxidant. The initial α-pinene concentration was 20–50 ppb to ensure that the dominant peroxy radical pathway under low-NOx conditions is reaction with HO2, produced from reaction of OH with H2O2, and under high-NOx conditions, reactions with NO. Here we present the gas-phase results observed. Under low-NOx conditions the main first generation oxidation products are a number of α-pinene hydroxy hydroperoxides and pinonaldehyde, accounting for over 40 % of the yield. In all, 65–75 % of the carbon can be accounted for in the gas phase; this excludes first-generation products that enter the particle phase. We suggest that pinonaldehyde forms from RO2 + HO2 through an alkoxy radical channel that regenerates OH, a mechanism typically associated with acyl peroxy radicals, not alkyl peroxy radicals. The OH oxidation and photolysis of α-pinene hydroxy hydroperoxides leads to further production of pinonaldehyde, resulting in total pinonaldehyde yield from low-NOx OH oxidation of ∼33 %. The low-NOx OH oxidation of pinonaldehyde produces a number of carboxylic acids and peroxyacids known to be important secondary organic aerosol components. Under high-NOx conditions, pinonaldehyde was also found to be the major first-generation OH oxidation product. The high-NOx OH oxidation of pinonaldehyde did not produce carboxylic acids and peroxyacids. A number of organonitrates and peroxyacyl nitrates are observed and identified from α-pinene and pinonaldehyde.
منابع مشابه
α-pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NOx environments
The gas-phase oxidation of α-pinene produces a large amount of secondary organic aerosol (SOA) in the atmosphere. A number of carboxylic acids, organosulfates and nitrooxy organosulfates associated with α-pinene have been found in field samples and some are used as tracers of αpinene oxidation. α-pinene reacts readily with OH and O3 in the atmosphere followed by reactions with both HO2 and NO. ...
متن کاملThe effect of particle acidity on secondary organic aerosol formation from α-pinene photooxidation under atmospherically relevant conditions
Secondary organic aerosol (SOA) formation from photooxidation of α-pinene has been investigated in a photochemical reaction chamber under varied inorganic seed particle acidity levels at moderate relative humidity. The effect of particle acidity on SOA yield and chemical composition was examined under highand low-NOx conditions. The SOA yield (4.2–7.6 %) increased nearly linearly with the incre...
متن کاملEffect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes
Secondary organic aerosol (SOA) formation from the photooxidation of one monoterpene (α-pinene) and two sesquiterpenes (longifolene and aromadendrene) is investigated in the Caltech environmental chambers. The effect of NOx on SOA formation for these biogenic hydrocarbons is evaluated by performing photooxidation experiments under varying NOx conditions. The NOx dependence of α-pinene SOA forma...
متن کاملSOA formation from the photooxidation of α-pinene: systematic exploration of the simulation of chamber data
Chemical mechanisms play an important role in simulating the atmospheric chemistry of volatile organic compound oxidation. Comparison of mechanism simulations with laboratory chamber data tests our level of understanding of the prevailing chemistry as well as the dynamic processes occurring in the chamber itself. α-Pinene photooxidation is a well-studied system experimentally, for which detaile...
متن کاملDimers in α-pinene secondary organic aerosol: effect of hydroxyl radical, ozone, relative humidity and aerosol acidity
The formation of secondary organic aerosol (SOA) from both ozonolysis and hydroxyl radical (OH)-initiated oxidation of α-pinene under conditions of high nitric oxide (NO) concentrations with varying relative humidity (RH) and aerosol acidity was investigated in the University of North Carolina dual outdoor smog chamber facility. SOA formation from ozonolysis of α-pinene was enhanced relative to...
متن کامل