Spectral Theory from the Second-Order q-Difference Operator

نویسنده

  • Lazhar Dhaouadi
چکیده

Spectral theory from the second-order q-difference operator Δ q is developed. We give an integral representation of its inverse, and the resolvent operator is obtained. As application , we give an analogue of the Poincare inequality. We introduce the Zeta function for the operator Δ q and we formulate some of its properties. In the end, we obtain the spectral measure. 1. Basic definitions Consider 0 < q < 1. In what follows, the standard conventional notations from [1] will be used R q = ∓ q n , n ∈ Z , R + q = q n , n ∈ Z , (a, q) 0 = 1, (a, q) n = n−1 i=0 1 − aq i , [n] q = 1 − q n 1 − q. The q-schift operator is Λ q f (x) = f (qx). (1.2)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-adjoint difference operators and classical solutions to the Stieltjes-Wigert moment problem

Abstract. The Stieltjes–Wigert polynomials, which correspond to an indeterminate moment problem on the positive half-line, are eigenfunctions of a second order q-difference operator. We consider the orthogonality measures for which the difference operator is symmetric in the corresponding weighted L-spaces. Under some additional assumptions these measures are exactly the solutions to the q-Pear...

متن کامل

On Generalization of Sturm-Liouville Theory for Fractional Bessel Operator

In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...

متن کامل

Eigenfunction expansion in the singular case for q-Sturm-Liouville operators

In this work, we prove the existence of a spectral function for singular q-Sturm-Liouville operator. Further, we establish a Parseval equality and expansion formula in eigenfunctions by terms of the spectral function.

متن کامل

Spectral Theory and Special Functions

A short introduction to the use of the spectral theorem for self-adjoint operators in the theory of special functions is given. As the first example, the spectral theorem is applied to Jacobi operators, i.e. tridiagonal operators, on l(Z≥0), leading to a proof of Favard’s theorem stating that polynomials satisfying a three-term recurrence relation are orthogonal polynomials. We discuss the link...

متن کامل

THE BIG q-JACOBI FUNCTION TRANSFORM

Abstract. We give a detailed description of the resolution of the identity of a second order q-difference operator considered as an unbounded self-adjoint operator on two different Hilbert spaces. The q-difference operator and the two choices of Hilbert spaces naturally arise from harmonic analysis on the quantum group SUq(1, 1) and SUq(2). The spectral analysis associated to SUq(1, 1) leads to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2007  شماره 

صفحات  -

تاریخ انتشار 2007