On the Performance of SQP Methods for Nonlinear Optimization

نویسندگان

  • Philip E. Gill
  • Michael A. Saunders
  • Elizabeth Wong
چکیده

This paper concerns some practical issues associated with the formulation of sequential quadratic programming (SQP) methods for large-scale nonlinear optimization. SQP methods find an approximate solution of a sequence of quadratic programming (QP) subproblems in which a quadratic model of the objective function is minimized subject to the linearized constraints. Extensive numerical results are given for 1153 problems from the CUTEst test collection. The results indicate that SQP methods based on maintaining a quasi-Newton approximation to the Hessian of the Lagrangian function are both reliable and efficient for general large-scale optimization problems. In particular, the results show that in some situations, quasi-Newton methods are more efficient than competing methods based on the exact Hessian of the Lagrangian. The paper concludes with discussion of an SQP method that employs both approximate and exact Hessian information. In this approach the quadratic programming subproblem is either the conventional subproblem defined in terms of a positive-definite quasi-Newton approximate Hessian, or a convexified problem based on the exact Hessian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Modified IPSO-SQP Algorithm to Solve Nonlinear Time Optimal Bang-Bang Control Problem

In this paper, an intelligent-gradient based algorithm is proposed to solve time optimal bang-bang control problem. The proposed algorithm is a combination of an intelligent algorithm called improved particle swarm optimization algorithm (IPSO) in the first stage of optimization process together with a gradient-based algorithm called successive quadratic programming method (SQP) in the second s...

متن کامل

Decentralized Advanced Model Predictive Controller of Fluidized-Bed for Polymerization Process

The control of fluidized-bed operations processes is still one of the major areas of research due to the complexity of the process and the inherent nonlinearity and varying dynamics involved in its operation. There are varieties of problems in chemical engineering that can be formulated as NonLinear Programming (NLPs). The quality of the developed solution significantly affects the performa...

متن کامل

Second order sensitivity analysis for shape optimization of continuum structures

This study focuses on the optimization of the plane structure. Sequential quadratic programming (SQP) will be utilized, which is one of the most efficient methods for solving nonlinearly constrained optimization problems. A new formulation for the second order sensitivity analysis of the two-dimensional finite element will be developed. All the second order required derivatives will be calculat...

متن کامل

Sequential Quadratic Programming Methods ∗

In his 1963 PhD thesis, Wilson proposed the first sequential quadratic programming (SQP) method for the solution of constrained nonlinear optimization problems. In the intervening 48 years, SQP methods have evolved into a powerful and effective class of methods for a wide range of optimization problems. We review some of the most prominent developments in SQP methods since 1963 and discuss the ...

متن کامل

Local Convergence of SQP Methods for Mathematical Programs with Equilibrium Constraints

Recently, nonlinear programming solvers have been used to solve a range of mathematical programs with equilibrium constraints (MPECs). In particular, sequential quadratic programming (SQP) methods have been very successful. This paper examines the local convergence properties of SQP methods applied to MPECs. SQP is shown to converge superlinearly under reasonable assumptions near a strongly sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015