Mechanical Forces of Fission Yeast Growth

نویسندگان

  • Nicolas Minc
  • Arezki Boudaoud
  • Fred Chang
چکیده

Mechanical properties contribute to the control of cell size, morphogenesis, development, and lifestyle of fungal cells. Tip growth can be understood by a viscoplastic model, in which growth is derived by high internal turgor pressure and cell-wall elasticity. To understand how these properties regulate growth in the rod-shaped fission yeast Schizosaccaromyces pombe, we devised femtoliter cylindrical polydimethylsiloxane (PDMS) microchambers with varying elasticity as force sensors for single cells. By buckling cells in these chambers, we determine the elastic surface modulus of the cell wall to be 20.2 +/- 6.1 N.m(-1). By analyzing the growth of the cells as they push against the walls of the chamber, we derive force-velocity relationships and values for internal effective turgor pressure of 0.85 +/- 0.15 MPa and a growth-stalling force of 11 +/- 3 muN. The behavior of cells buckling under the force of their own growth provides an independent test of this model and parameters. Force generation is dependent on turgor pressure and a glycerol synthesis gene, gpd1(+) (glycerol-3-phosphate dehydrogenase), and is independent of actin cables. This study develops a quantitative framework for tip cell growth and characterizes mechanisms of force generation that contribute to fungal invasion into host tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Importance of mitochondrial dynamics during meiosis and sporulation.

Opposing fission and fusion events maintain the yeast mitochondrial network. Six proteins regulate these membrane dynamics during mitotic growth-Dnm1p, Mdv1p, and Fis1p mediate fission; Fzo1p, Mgm1p, and Ugo1p mediate fusion. Previous studies established that mitochondria fragment and rejoin at distinct stages during meiosis and sporulation, suggesting that mitochondrial fission and fusion are ...

متن کامل

Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore

Accurate chromosome segregation depends on proper kinetochore-microtubule attachment. Upon microtubule interaction, kinetochores are subjected to forces generated by the microtubules. In this work, we used laser ablation to sever microtubules attached to a merotelic kinetochore, which is laterally stretched by opposing pulling forces exerted by microtubules, and inferred the mechanical response...

متن کامل

Mechanical and molecular basis for the symmetrical division of the fission yeast nuclear envelope.

In fission yeast Schizosaccharomyces pombe, the nuclear envelope remains intact throughout mitosis and undergoes a series of symmetrical morphological changes when the spindle pole bodies (SPBs), embedded in the nuclear envelope, are pushed apart by elongating spindle microtubules. These symmetrical membrane shape transformations do not correspond to the shape behavior of an analogous system ba...

متن کامل

Contributions of Turgor Pressure, the Contractile Ring, and Septum Assembly to Forces in Cytokinesis in Fission Yeast

A paradigm of cytokinesis in animal cells is that the actomyosin contractile ring provides the primary force to divide the cell. In the fission yeast Schizosaccharomyces pombe, cytokinesis also involves a conserved cytokinetic ring, which has been generally assumed to provide the force for cleavage (see also [5]). However, in contrast to animal cells, cytokinesis in yeast cells also requires th...

متن کامل

Role of turgor pressure in endocytosis in fission yeast

Yeast and other walled cells possess high internal turgor pressure that allows them to grow and survive in the environment. This turgor pressure, however, may oppose the invagination of the plasma membrane needed for endocytosis. Here we study the effects of turgor pressure on endocytosis in the fission yeast Schizosaccharomyces pombe by time-lapse imaging of individual endocytic sites. Decreas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2009