Alpha5GABAA receptors regulate the intrinsic excitability of mouse hippocampal pyramidal neurons.
نویسندگان
چکیده
GABA(A) receptors generate both phasic and tonic forms of inhibition. In hippocampal pyramidal neurons, GABA(A) receptors that contain the alpha5 subunit generate a tonic inhibitory conductance. The physiological role of this tonic inhibition is uncertain, although alpha5GABA(A) receptors are known to influence hippocampal-dependent learning and memory processes. Here we provide evidence that alpha5GABA(A) receptors regulate the strength of the depolarizing stimulus that is required to generate an action potential in pyramidal neurons. Neurons from alpha5 knock-out (alpha5-/-) and wild-type (WT) mice were studied in brain slices and cell cultures using whole cell and perforated-patch-clamp techniques. Membrane resistance was 1.6-fold greater in alpha5-/- than in WT neurons, but the resting membrane potential and chloride equilibrium potential were similar. Membrane hyperpolarization evoked by an application of exogenous GABA was greater in WT neurons. Inhibiting the function of alpha5GABA(A) receptor with nonselective (picrotoxin) or alpha5 subunit-selective (L-655,708) compounds depolarized WT neurons by approximately 3 mV, whereas no change was detected in alpha5-/- neurons. The depolarizing current required to generate an action potential was twofold greater in WT than in alpha5-/- neurons, whereas the slope of the input-output relationship for action potential firing was similar. We conclude that shunting inhibition mediated by alpha5GABA(A) receptors regulates the firing of action potentials and may synchronize network activity that underlies hippocampal-dependent behavior.
منابع مشابه
Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture
Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...
متن کاملEffects of resveratrol on intrinsic neuronal properties of CA1 pyramidal neurons in rat hippocampal slices
Introduction: Resveratrol (3,5,4-trihydroxystilbene) a non-flavonoid polyphenol found in some plants like grapes, peanuts and pomegranates, possesses a wide range of biological effects. Evidence indicates that resveratrol has beneficial effects on nervous system to induce neuroprotection. However, the cellular mechanisms of the effects are not fully determined. In the present study, the cellula...
متن کاملLow-frequency Stimulation Decreases Hyperexcitability through Adenosine A1 Receptors in the Hippocampus of Kindled Rats
Introduction: In this study, the role of A1 adenosine receptors in improving the effect of Low-Frequency Electrical Stimulation (LFS) on seizure-induced hyperexcitability of hippocampal CA1 pyramidal neurons was investigated. Methods: A semi-rapid hippocampal kindling model was used to induce seizures in male Wistar rats. Examination of the electrophysiological properties of CA1 pyramidal neur...
متن کاملElectrophysiological study of amygdale-induced changes in the excitability of CA1 hippocampal pyramidal neurons in male adult rats
Introduction: Many studies have shown that amygdala kindling produces synaptic potentiation by induction of changes in the neuronal electrophysiological properties and inward currents both in epileptic focus and in the areas which are in connection with the epileptic focus and have important role in seizure development and progression such as hippocampal CA1 region. However, cellular mechani...
متن کاملα5GABAA receptors regulate the intrinsic excitability of mouse hippocampal pyramidal neurons
GABAA receptors generate both phasic and tonic forms of inhibition. In hippocampal pyramidal neurons, GABAA receptors that contain the α5 subunit generate a tonic inhibitory conductance. The physiological role of this tonic inhibition is uncertain, although α5GABAA receptors are known to influence hippocampal-dependent learning and memory processes. Here, we provide evidence that α5GABAA recept...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 98 4 شماره
صفحات -
تاریخ انتشار 2007