Streamlined bioreactor-based production of human cartilage tissues.
نویسندگان
چکیده
Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.
منابع مشابه
Bioreactor Development for Cartilage Tissue Engineering: Computational Modelling and Experimental Results
Tissue engineering is an emerging technology to replace tissues and organs damaged due to trauma of disease with fully functional living tissue equivalents. Tissue development is facilitated by bioreactors, devices engineered to deliver appropriate spatial and temporal nutrient transport and mechanical loading in a welldefined and controlled environment. Bioreactors that provide well-defined an...
متن کاملStrategies for Enhancing the Accumulation and Retention of Extracellular Matrix in Tissue-Engineered Cartilage Cultured in Bioreactors
Production of tissue-engineered cartilage involves the synthesis and accumulation of key constituents such as glycosaminoglycan (GAG) and collagen type II to form insoluble extracellular matrix (ECM). During cartilage culture, macromolecular components are released from nascent tissues into the medium, representing a significant waste of biosynthetic resources. This work was aimed at developing...
متن کاملScaffold-free cartilage tissue engineering with a small population of human nasoseptal chondrocytes.
OBJECTIVE Cartilage tissue engineering is a promising approach to provide suitable materials for nasal reconstruction; however, it typically requires large numbers of cells. We have previously shown that a small number of chondrocytes cultivated within a continuous flow bioreactor can elicit substantial tissue growth, but translation to human chondrocytes is not trivial. Here, we aimed to demon...
متن کاملModelling the Oxygen Distribution in a Perfused Bioreactor for Cartilage Production
Introduction. We describe a continuous modelling and simulation framework aimed at monitoring and steering a recently developed bioreactor for cartilage production based on mesenchymal stem cells (MSCs). This bioreactor provides online-access to the cell density by acoustic measuring sections. An appropriate oxygen distribution throughout the bioreactor is essential for a successful expansion a...
متن کاملInterstitial Perfusion Culture with Specific Soluble Factors Inhibits Type I Collagen Production from Human Osteoarthritic Chondrocytes in Clinical-Grade Collagen Sponges
Articular cartilage has poor healing ability and cartilage injuries often evolve to osteoarthritis. Cell-based strategies aiming to engineer cartilaginous tissue through the combination of biocompatible scaffolds and articular chondrocytes represent an alternative to standard surgical techniques. In this context, perfusion bioreactors have been introduced to enhance cellular access to oxygen an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European cells & materials
دوره 31 شماره
صفحات -
تاریخ انتشار 2016