Effective learning hyper-heuristics for the course timetabling problem
نویسندگان
چکیده
Course timetabling is an important and recurring administrative activity in most educational institutions. This article combines a general modeling methodology with effective learning hyper-heuristics to solve this problem. The proposed hyper-heuristics are based on an iterated local search procedure that autonomously combines a set of move operators. Two types of learning for operator selection are contrasted: a static (offline) approach, with a clear distinction between training and execution phases; and a dynamic approach that learns on the fly. The resulting algorithms are tested over the set of real-world instances collected by the first and second International Timetabling competitions. The dynamic scheme statistically outperforms the static counterpart, and produces competitive results when compared to the state-of-the-art, even producing a new best-known solution. Importantly, our study illustrates that algorithms with increased autonomy and generality can outperform human designed problem-specific algorithms. 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Iterated VND Versus Hyper-heuristics: Effective and General Approaches to Course Timetabling
The course timetabling problem is one of the most difficult combinatorial problems, it requires the assignment of a fixed number of subjects into a number of time slots minimizing the number of student conflicts. This article presents a comparison between state-of-the-art hyper-heuristics and a newly proposed iterated variable neighborhood descent algorithm when solving the course timetabling p...
متن کاملEvolving Hyper-Heuristics for a Highly Constrained Examination Timetabling Problem
A lot of research has been conducted on hyper-heuristics for examination timetabling. However, most of this work has been focused on an uncapacitated version of the problem. This study reports on evolving hyper-heuristics for a highly constrained version of the problem, namely, the set of problems from the second International Timetabling Competition (ITC ’07). Previous work has shown that usin...
متن کاملIterated local search using an add and delete hyper-heuristic for university course timetabling
Hyper-heuristics are (meta-)heuristics that operate at a higher level to choose or generate a set of low-level (meta-)heuristics in an attempt of solve difficult optimization problems. Iterated Local Search (ILS) is a well-known approach for discrete optimization, combining perturbation and hill-climbing within an iterative framework. In this study, we introduce an ILS approach, strengthened by...
متن کاملEvolving timetabling heuristics using a grammar-based genetic programming hyper-heuristic framework
This paper introduces a Grammar-based Genetic Programming Hyper-Heuristic framework (GPHH) for evolving constructive heuristics for timetabling. In this application GP is used as an online learning method which evolves heuristics while solving the problem. In other words, the system keeps on evolving heuristics for a problem instance until a good solution is found. The framework is tested on so...
متن کاملA methodology for determining an effective subset of heuristics in selection hyper-heuristics
We address the important step of determining an effective subset of heuristics in selection hyper-heuristics. Little attention has been devoted to this in the literature, and the decision is left at the discretion of the investigator. The performance of a hyper-heuristic depends on the quality and size of the heuristic pool. Using more than one heuristic is generally advantageous, however, an u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 238 شماره
صفحات -
تاریخ انتشار 2014