Sintering Properties of Mechanically Alloyed Ti-5Al-2.5Fe
نویسنده
چکیده
In this study, Ti-5Al-2.5Fe alloy was prepared by powder metallurgy. The elemental titanium, aluminum, and iron powders were mechanically alloyed for 10 h in a vacuum atmosphere. A stainless steel jar and stainless steel balls were used for mechanical alloying. The alloyed powders were then sintered by vacuum hot pressing at 950 °C for a soaking time of 30 minutes. Pure titanium was also sintered at the same conditions for comparison of mechanical properties and microstructural behavior. The samples were investigated by scanning electron microscopy, XRD analysis, and optical microscopy. Results showed that, after mechanical alloying, a homogeneous distribution of the elements was obtained, and desired - structure was determined. Ti-5Al-2.5Fe alloy was successfully produced, and the alloy showed enhanced mechanical properties compared to the commercial pure titanium. Keywords—Ti5Al2.5Fe, mechanical alloying, hot pressing, sintering.
منابع مشابه
IN SITU FABRICATION OF Al 2024-Mg2Si COMPOSITE BY SPARK PLASMA SINTERING OF REACTIVE MECHANICALLY ALLOYED POWDER
In situ Al2024- Mg2Si composite was fabricated by spark plasma sintering (SPS) of reactive powder. Reactive powder was obtained from mechanical alloying (MA) of elemental powders. Clad layers of in situ composite were fabricated on Al substrates by spark plasma sintering (SPS). Structural evolution during MA process and after SPS was investigated by X-ray diffractometery (XRD). Scanning electro...
متن کاملInvestigation of influences of alloying elements and sintering temperature on the properties of high strength low alloyed sintered steel
Producing parts with high density and improved mechanical properties is one of the most important aims of powder metallurgy process. There are many factors for attaining modified properties in sintered parts but among them controlling type and quantity of alloying elements and manufacturing parameters such as compacting pressure, sintering temperature are the most effective. In this research, t...
متن کاملFabrication of Nanostructured Cu matrix Nanocomposites by High Energy Mechanical Milling and Spark Plasma Sintering
Spark plasma sintering (SPS) is a sintering process that is capable of sintering hard worked powders in short times. This technique was used to fabricate bulk Cu and Cu-SiC nanocomposites. Pure Cu and mixed powders of Cu including 4 vol% of SiC nanoparticles were mechanically alloyed for 25 h and sintered at 750˚C under vacuum condition by SPS method. Microstructures of the materials were chara...
متن کاملEffect of Mechanical Alloying and Sintering on Phase Transformation, Microstructural Evolution, Mechanical Properties and Density of Zr-Cr Alloy
The purpose of present research was production ofZr-based alloy as the nuclear fuel cladding by mechanical alloying (MA) and sintering process. Firstly, Zr and Cr powders were mechanically alloyed to produce the refractory and hard Zr-10 wt% Cr alloy, and then, the powder mixtures were consolidated by press and following sintering at temperature of 800˚C min. The phase evolution, microstructura...
متن کامل1 Layout
Mechanical alloying of Ti-Si and NiTi was performed by high-energy ball milling at ambient temperature. The structural and compositional evolutions during mechanical alloying were investigated. Results showed that the crystallite size of mechanically alloyed Ti-Si and Ni-Ti powders decreased with increasing milling time and the steady-state crystallite size was approximately 10 nm. The mechanic...
متن کامل