The Second Gradient Operator and Integral Theorems for Tensor Fields on Curved Surfaces
نویسندگان
چکیده
Abstract. On the basis of the second gradient operator defined on curved surfaces, the second category of integral theorems for tensor fields, including the second divergence theorems, the second gradient theorems, the second curl theorems and the second circulation theorems, are systematically demonstrated. Simple conservation laws about the mean curvature and Gauss curvature are deduced from the integral theorems.
منابع مشابه
L_1 operator and Gauss map of quadric surfaces
The quadrics are all surfaces that can be expressed as a second degree polynomialin x, y and z. We study the Gauss map G of quadric surfaces in the 3-dimensional Euclidean space R^3 with respect to the so called L_1 operator ( Cheng-Yau operator □) acting on the smooth functions defined on the surfaces. For any smooth functions f defined on the surfaces, L_f=tr(P_1o hessf), where P_1 is t...
متن کاملHoph Hypersurfaces of Sasakian Space Form with Parallel Ricci Operator Esmaiel Abedi, Mohammad Ilmakchi Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
Let M^2n be a hoph hypersurfaces with parallel ricci operator and tangent to structure vector field in Sasakian space form. First, we show that structures and properties of hypersurfaces and hoph hypersurfaces in Sasakian space form. Then we study the structure of hypersurfaces and hoph hypersurfaces with a parallel ricci tensor structure and show that there are two cases. In the first case, th...
متن کاملOn inverse problem for singular Sturm-Liouville operator with discontinuity conditions
In this study, properties of spectral characteristic are investigated for singular Sturm-Liouville operators in the case where an eigen parameter not only appears in the differential equation but is also linearly contained in the jump conditions. Also Weyl function for considering operator has been defined and the theorems which related to uniqueness of solution of inverse proble...
متن کاملNew Improvement in Interpretation of Gravity Gradient Tensor Data Using Eigenvalues and Invariants: An Application to Blatchford Lake, Northern Canada
Recently, interpretation of causative sources using components of the gravity gradient tensor (GGT) has had a rapid progress. Assuming N as the structural index, components of the gravity vector and gravity gradient tensor have a homogeneity degree of -N and - (N+1), respectively. In this paper, it is shown that the eigenvalues, the first and the second rotational invariants of the GGT (I1 and ...
متن کاملLecture Notes on Differentiable Manifolds
1. Tangent Spaces, Vector Fields in R and the Inverse Mapping Theorem 1 1.1. Tangent Space to a Level Surface 1 1.2. Tangent Space and Vectors Fields on R 2 1.3. Operator Representations of Vector Fields 3 1.4. Integral Curves 4 1.5. Implicitand Inverse-Mapping Theorems 5 2. Topological and Differentiable Manifolds 9 3. Diffeomorphisms, Immersions, Submersions and Submanifolds 9 4. Fibre Bundle...
متن کامل