p-adic aspects of Jacobi forms

نویسندگان

  • Adriana Sofer
  • Fernando Rodriguez-Villegas
چکیده

We are interested in understanding and describing the p-adic properties of Jacobi forms. As opposed to the case of modular forms, not much work has been done in this area. The literature includes [3, 4, 7]. In the first section, we follow Serre’s ideas from his theory of p-adic modular forms. We study Jacobi forms whose Fourier expansions have integral coefficients and look at congruences between them. Non-trivial examples are given by Jacobi-Eisenstein series. It turns out that two Jacobi forms need to have the same index and satisfy a condition on the weights in order to be congruent. If we define p-adic Jacobi forms in the natural way in this context, and restrict ourselves to the case of SL2(Z), we obtain a structure theorem for the space of p-adic Jacobi forms for SL2(Z) of a given weight χ ∈ Z ′ p and index m ∈ Z. Another feature is that p-adic Jacobi forms for Γ0(p) are also forms for SL2(Z). This parallels the similar result for modular forms, and it will most probably play an important role in defining some p-adic operators that do not arise directly from complex operators. In the second section, we associate to every Jacobi form with integral coefficients a measure on Zp with values in the p-adic ring of Katz’s generalized modular forms. This is an injection that allows us to interpret Jacobi forms with p-adic coefficients as truly p-adic objects, and this suggests where to look for the adequate “test objects” for a modular p-adic theory. It also provides examples of p-adic analytic families of modular forms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Approach to the p - adic Theory of Jacobi Forms

The theory of p-adic modular forms was developed by J.-P. Serre [8] and N. Katz [5]. This theory is by now considered classical. Investigation of p-adic congruences for modular forms of half-integer weight was carried out by N. Koblitz [6] and led him to deep conjectures. It seems natural to search for p-adic properties of other types of automorphic forms. In this paper we use the Serre approac...

متن کامل

GENERALISED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES

Introduction 2 1. Preliminaries 6 1.1. Algebraic modular forms 6 1.2. Modular forms over C 9 1.3. p-adic modular forms 11 1.4. Elliptic curves with complex multiplication 12 1.5. Values of modular forms at CM points 14 2. Generalised Heegner cycles 15 2.1. Kuga-Sato varieties 15 2.2. The variety Xr and its cohomology 18 2.3. Definition of the cycles 19 2.4. Relation with Heegner cycles and L-se...

متن کامل

JACOBI FORMS AND A TWO-VARIABLE p-ADIC L-FUNCTION

Introduction. Consider a Jacobi form φ(τ, z) = ∑ n,r c(n, r)q ζ whose Fourier coefficients c(n, r) are algebraic numbers. Let p be an odd prime. In this paper we associate to φ a Λ-adic p-ordinary form in the sense of [4]. The construction comes from the map Dν introduced in [2], Theorem 3.1. This map associates to a Jacobi form a family of modular forms parametrised by ν. We obtain the two-var...

متن کامل

Behavior of $R$-groups for $p$-adic inner forms of quasi-split special unitary groups

‎We study $R$-groups for $p$-adic inner forms of quasi-split special unitary groups‎. ‎We prove Arthur's conjecture‎, ‎the isomorphism between the Knapp-Stein $R$-group and the Langlands-Arthur $R$-group‎, ‎for quasi-split special unitary groups and their inner forms‎. ‎Furthermore‎, ‎we investigate the invariance of the Knapp-Stein $R$-group within $L$-packets and between inner forms‎. ‎This w...

متن کامل

DIAGONAL CYCLES AND EULER SYSTEMS I: A p-ADIC GROSS-ZAGIER FORMULA

This article is the first in a series devoted to studying generalised Gross-KudlaSchoen diagonal cycles in the product of three Kuga-Sato varieties and the Euler system properties of the associated Selmer classes, with special emphasis on their application to the Birch–Swinnerton-Dyer conjecture and the theory of Stark-Heegner points. The basis for the entire study is a p-adic formula of Gross-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006