A Fuzzy ARTMAP Based on Quantitative Structure-Property Relationships (QSPRs) for Predicting Aqueous Solubility of Organic Compounds
نویسندگان
چکیده
Quantitative structure-property relationships (QSPRs) for estimating aqueous solubility of organic compounds at 25 degrees C were developed based on a fuzzy ARTMAP and a back-propagation neural networks using a heterogeneous set of 515 organic compounds. A set of molecular descriptors, developed from PM3 semiempirical MO-theory and topological descriptors (first-, second-, third-, and fourth-order molecular connectivity indices), were used as input parameters to the neural networks. Quantum chemical input descriptors included average polarizability, dipole moment, resonance energy, exchange energy, electron-nuclear attraction energy, and nuclear-nuclear (core-core) repulsion energy. The fuzzy ARTMAP/QSPR correlated aqueous solubility (S, mol/L) for a range of -11.62 to 4.31 logS with average absolute errors of 0.02 and 0.14 logS units for the overall and validation data sets, respectively. The optimal 11-13-1 back-propagation/QSPR model was less accurate, for the same solubility range, and exhibited larger average absolute errors of 0.29 and 0.28 logS units for the overall and validation sets, respectively. The fuzzy ARTMAP-based QSPR approach was shown to be superior to other back-propagation and multiple linear regression/QSPR models for aqueous solubility of organic compounds.
منابع مشابه
Fuzzy ARTMAP and Back-Propagation Neural Networks Based Quantitative Structure-Property Relationships (QSPRs) for Octanol-Water Partition Coefficient of Organic Compounds
Quantitative structure-property relationships (QSPRs) for estimating the logarithm octanol/water partition coefficients, logK(ow), at 25 degrees C were developed based on fuzzy ARTMAP and back-propagation neural networks using a heterogeneous set of 442 organic compounds. The set of molecular descriptors were derived from molecular connectivity indices and quantum chemical descriptors calculate...
متن کاملA Fuzzy ARTMAP-Based Quantitative Structure-Property Relationship (QSPR) for the Henry's Law Constant of Organic Compounds
Quantitative structure-property relationships (QSPRs) for estimating a dimensionless Henry's Law constant of organic compounds at 25 degrees C were developed based on a fuzzy ARTMAP and back-propagation neural networks using a heterogeneous set of 495 organic compounds. A set of molecular descriptors developed from PM3 semiempirical MO-theory and topological descriptors (second-order molecular ...
متن کاملEstimation of Infinite Dilution Activity Coefficients of Organic Compounds in Water with Neural Classifiers
A new approach is presented for the development of quantitative structure–property relations (QSPR) based on the extraction of relevant molecular features with self-organizing maps and the use of a modified fuzzy-ARTMAP classifier for variable prediction. The present methodology is demonstrated for the development of a QSPR for the aqueous-phase infinite dilution activity coefficient , based on...
متن کاملNeural Network Based Quantitative Structural Property Relations (QSPRs) for Predicting Boiling Points of Aliphatic Hydrocarbons
Quantitative structural property relations (QSPRs) for boiling points of aliphatic hydrocarbons were derived using a back-propagation neural network and a modified Fuzzy ARTMAP architecture. With the back-propagation model, the selected molecular descriptors were capable of distinguishing between diastereomers. The QSPRs were obtained from four valance molecular connectivity indices (1chiv,2chi...
متن کاملUsing Alternative Multi-variate Data Analysis Methods for Predicting Physical-chemical Properties of Organic Compounds
In drug design, the knowledge of physical properties of organic compounds is vital. The special field of ADMET (Administration, Distribution, Metabolism, Excretion, Toxicity) involves the determination of properties governing the effect of a drug on the human body, such as aqueous solubility, intestinal absorption and permeability. Assessing these properties experimentally, however, is often la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical information and computer sciences
دوره 41 5 شماره
صفحات -
تاریخ انتشار 2001