Multi-time-Scale Traffic Modeling Using Markovian and L-Systems Models
نویسندگان
چکیده
Traffic engineering of IP networks requires the characterization and modeling of network traffic on multiple time scales due to the existence of several statistical properties that are invariant across a range of time scales, such as selfsimilarity, LRD and multifractality. These properties have a significant impact on network performance and, therefore, traffic models must be able to incorporate them in their mathematical structure and parameter inference procedures. In this work, we address the modeling of network traffic using a multi-timescale framework. We evaluate the performance of two classes of traffic models (Markovian and Lindenmayer-Systems based traffic models) that incorporate the notion of time scale using different approaches: directly in the model structure, in the case of the Lindenmayer-Systems based models, or indirectly through a fitting of the second-order statistics, in the case of the Markovian models. In addition, we address the importance of modeling packet size for IP traffic, an issue that is frequently misregarded. Thus, in each class we evaluate models that are intended to describe only the packet arrival process and models that are intended to describe both the packet arrival and packet size processes: specifically, we consider a Markov modulated Poisson process and a batch Markovian arrival process as examples of Markovian models and a set of four Lindenmayer-Systems based models as examples of non Markovian models that are able to perform a multi-time-scale modeling of network traffic. All models are evaluated by comparing the density function, the autocovariance function, the loss ratio and the average waiting time in queue corresponding to measured traces and to traces synthesized from the fitted models. We resort to the well known Bellcore pOct traffic trace and to a trace measured at the University of Aveiro. The results obtained show that (i) both the packet arrival and packet size processes need to be modeled for an accurate characterization of IP traffic and (ii) despite the differences in the ways Markovian and L-System models incorporate multiple time scales in their mathematical framework, both can achieve very good performance. keywords: Traffic modeling, Markovian arrival processes, L-Systems.
منابع مشابه
Markovian Delay Prediction-Based Control of Networked Systems
A new Markov-based method for real time prediction of network transmission time delays is introduced. The method considers a Multi-Layer Perceptron (MLP) neural model for the transmission network, where the number of neurons in the input layer is minimized so that the required calculations are reduced and the method can be implemented in the real-time. For this purpose, the Markov process order...
متن کاملMonte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System
We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobsho...
متن کاملModeling and Evaluation of Stochastic Discrete-Event Systems with RayLang Formalism
In recent years, formal methods have been used as an important tool for performance evaluation and verification of a wide range of systems. In the view points of engineers and practitioners, however, there are still some major difficulties in using formal methods. In this paper, we introduce a new formal modeling language to fill the gaps between object-oriented programming languages (OOPLs) us...
متن کاملModeling and Evaluation of Stochastic Discrete-Event Systems with RayLang Formalism
In recent years, formal methods have been used as an important tool for performance evaluation and verification of a wide range of systems. In the view points of engineers and practitioners, however, there are still some major difficulties in using formal methods. In this paper, we introduce a new formal modeling language to fill the gaps between object-oriented programming languages (OOPLs) us...
متن کاملModeling Network Traffic with Multifractal Behavior
The traffic engineering of IP networks requires accurate characterization and modeling of network traffic, due to the growing diversity of multimedia applications and the need to efficiently support QoS differentiation in the network. In recent years several types of traffic behavior, that can have significant impact on network performance, were discovered: longrange dependence, self-similarity...
متن کامل