Nitroxyl (HNO) Stimulates Soluble Guanylyl Cyclase to Suppress Cardiomyocyte Hypertrophy and Superoxide Generation

نویسندگان

  • Eliane Q. Lin
  • Jennifer C. Irvine
  • Anh H. Cao
  • Amy E. Alexander
  • Jane E. Love
  • Ruchi Patel
  • Julie R. McMullen
  • David M. Kaye
  • Barbara K. Kemp-Harper
  • Rebecca H. Ritchie
چکیده

BACKGROUND New therapeutic targets for cardiac hypertrophy, an independent risk factor for heart failure and death, are essential. HNO is a novel redox sibling of NO• attracting considerable attention for the treatment of cardiovascular disorders, eliciting cGMP-dependent vasodilatation yet cGMP-independent positive inotropy. The impact of HNO on cardiac hypertrophy (which is negatively regulated by cGMP) however has not been investigated. METHODS Neonatal rat cardiomyocytes were incubated with angiotensin II (Ang II) in the presence and absence of the HNO donor Angeli's salt (sodium trioxodinitrate) or B-type natriuretic peptide, BNP (all 1 µmol/L). Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. RESULTS We now demonstrate that Angeli's salt inhibits Ang II-induced hypertrophic responses in cardiomyocytes, including increases in cardiomyocyte size, de novo protein synthesis and β-myosin heavy chain expression. Angeli's salt also suppresses Ang II induction of key triggers of the cardiomyocyte hypertrophic response, including NADPH oxidase (on both Nox2 expression and superoxide generation), as well as p38 mitogen-activated protein kinase (p38MAPK). The antihypertrophic, superoxide-suppressing and cGMP-elevating effects of Angeli's salt were mimicked by BNP. We also demonstrate that the effects of Angeli's salt are specifically mediated by HNO (with no role for NO• or nitrite), with subsequent activation of cardiomyocyte soluble guanylyl cyclase (sGC) and cGMP signaling (on both cGMP-dependent protein kinase, cGK-I and phosphorylation of vasodilator-stimulated phosphoprotein, VASP). CONCLUSIONS Our results demonstrate that HNO prevents cardiomyocyte hypertrophy, and that cGMP-dependent NADPH oxidase suppression contributes to these antihypertrophic actions. HNO donors may thus represent innovative pharmacotherapy for cardiac hypertrophy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The novel NO redox sibling, nitroxyl (HNO), prevents cardiomyocyte hypertrophy and superoxide generation via cGMP

We have previously shown that NO•/cGMP signalling is an important antihyper-trophic mechanism in the heart [1-3]. HNO is the one electron reduction of NO•, thought to elicit cardiovascular actions via cGMP and/or calcitonin gene-related peptide (CGRP) [4]; we have recently shown that the HNO donor Angeli's salt inhibits cardiomyocyte hypertrophy and superoxide generation [5]. We now test the hy...

متن کامل

The Effects of Nitroxyl (HNO) on Soluble Guanylate Cyclase Activity

It has been previously proposed that nitric oxide (NO) is the only biologically relevant nitrogen oxide capable of activating the enzyme soluble guanylate cyclase (sGC). However, recent reports implicate HNO as another possible activator of sGC. Herein, we examine the affect of HNO donors on the activity of purified bovine lung sGC and find that, indeed, HNO is capable of activating this enzyme...

متن کامل

The Soluble Guanylyl Cyclase Activator Bay 58-2667 Selectively Limits Cardiomyocyte Hypertrophy

BACKGROUND Although evidence now suggests cGMP is a negative regulator of cardiac hypertrophy, the direct consequences of the soluble guanylyl cyclase (sGC) activator BAY 58-2667 on cardiac remodeling, independent of changes in hemodynamic load, has not been investigated. In the present study, we tested the hypothesis that the NO(•)-independent sGC activator BAY 58-2667 inhibits cardiomyocyte h...

متن کامل

Mechanisms underlying activation of soluble guanylate cyclase by the nitroxyl donor Angeli's salt.

Nitroxyl (HNO) may be formed endogenously by uncoupled nitric-oxide (NO) synthases, enzymatic reduction of NO or as product of vascular nitroglycerin bioactivation. The established HNO donor Angeli's salt (trioxodinitrate, AS) causes cGMP-dependent vasodilation through activation of soluble guanylate cyclase (sGC). We investigated the mechanisms underlying this effect using purified sGC and cul...

متن کامل

Vasorelaxant and antiaggregatory actions of the nitroxyl donor isopropylamine NONOate are maintained in hypercholesterolemia.

Nitroxyl (HNO) displays pharmacological and therapeutic actions distinct from those of its redox sibling nitric oxide (NO(•)). It remains unclear, however, whether the vasoprotective actions of HNO are preserved in disease. The ability of the HNO donor isopropylamine NONOate (IPA/NO) to induce vasorelaxation, its susceptibility to tolerance development, and antiaggregatory actions were compared...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012