Molecular identification and localization of Trp homologues, putative calcium channels, in pregnant human uterus.
نویسندگان
چکیده
The mechanisms underlying the switch from uterine quiescence to contractile activity in labour are not clearly understood. Increasing evidence suggests that pathways of myometrial calcium homeostasis, including store-operated calcium entry (SOCE), may play an important role. The molecular basis of the membrane-associated calcium channels contributing to SOCE in pregnant human myometrium is not known, but they are likely to be hetero- or homo-oligomeric assemblies of transient receptor potential channel (TrpC) proteins, encoded by the mammalian homologues of Drosophila Trp genes. This study has therefore determined Trp gene expression and also TrpC protein expression and localization in term pregnant human myometrial tissue and primary cultured human myometrial smooth muscle (HMSM) cells. RT-PCR amplified fragments of Trp1, Trp3, Trp4, Trp6 and Trp7. PCR products were 100% homologous to published human sequences. Western blot analysis detected TrpC1, TrpC3, TrpC4 and TrpC6 proteins, which were of expected size. Immunolocalization revealed TrpC1, TrpC3, TrpC4 and TrpC6 protein expression in myometrial tissue and HMSM cells. TrpC protein immunostaining in HMSM cells was distributed in a distinct reticular fashion. TrpC proteins may be candidate proteins forming SOCE channels in term pregnant human myometrium.
منابع مشابه
Identification and Analysis of Cation Channel Homologues in Human Pathogenic Fungi
Fungi are major causes of human, animal and plant disease. Human fungal infections can be fatal, but there are limited options for therapy, and resistance to commonly used anti-fungal drugs is widespread. The genomes of many fungi have recently been sequenced, allowing identification of proteins that may become targets for novel therapies. We examined the genomes of human fungal pathogens for g...
متن کاملPutative capacitative calcium entry channels: expression of Drosophila trp and evidence for the existence of vertebrate homologues.
Capacitative calcium entry is a major pathway through which intracellular calcium stores are refilled after stimulation. It has been suggested that the protein encoded by the transient receptor potential (trp) gene expressed in Drosophila photoreceptors may be homologous with capacitative calcium entry channels. Expression of the trp gene product in Xenopus oocytes led to significant increases ...
متن کاملIdentification of Intracellular and Plasma Membrane Calcium Channel Homologues in Pathogenic Parasites
Ca(2+) channels regulate many crucial processes within cells and their abnormal activity can be damaging to cell survival, suggesting that they might represent attractive therapeutic targets in pathogenic organisms. Parasitic diseases such as malaria, leishmaniasis, trypanosomiasis and schistosomiasis are responsible for millions of deaths each year worldwide. The genomes of many pathogenic par...
متن کاملCalcium Channels Formed by Mammalian Trp Homologues.
Homologues of Drosophila trp genes have been isolated from mammalian species in hope that they may constitute the molecular basis of capacitative Ca(2+) entry. Expression of Trps suggests that they form Ca(2+) influx channels regulated by either store depletion or a more upstream event. Store-operated Trp channels can be formed by heteromultimerization.
متن کاملImmunolocalization and expression of small-conductance calcium-activated potassium channels in human myometrium
Small-conductance calcium-activated potassium (SK3) channels have been detected in human myometrium and we have previously shown a functional role of SK channels in human myometrium in vitro. The aims of this study were to identify the precise localization of SK3 channels and to quantify SK3 mRNA expression in myometrium from pregnant and non-pregnant women. Myometrial biopsies were obtained fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular human reproduction
دوره 8 10 شماره
صفحات -
تاریخ انتشار 2002