Molecular Dynamics Simulations of the Interior of Aqueous Reverse Micelles
نویسندگان
چکیده
Aqueous reverse micelles, which are surfactant aggregates in nonpolar solvents that enclose packets of aqueous solution, have been widely studied experimentally and theoretically, but much remains unknown about the properties of water in the interior. The few previous molecular dynamics simulations of reverse micelles have not examined how the micelle size affects these properties. We have modeled the interior of an aqueous reverse micelle as a rigid spherical cavity, treating only the surfactant headgroups and water at a molecular level. Interactions between the interior molecules and the cavity are represented by a simple continuum potential. The basic parameters of the modelsmicelle size, surface ion density, and water contentsare based on experimental measurements of Aerosol OT reverse micelles but could be chosen to match other surfactant systems as well. The surfactant head is modeled as a pair of atomic ions: a large headgroup ion fixed at the cavity surface and a mobile counterion. The SPC/E model is used for water. The simulations indicate that water near the cavity interface is immobilized by the high ion concentration. Three structural regions of water can be identified: water trapped in the ionic layer, water bound to the ionic layer, and water in the bulklike core. The basic properties of bulk water reemerge within a few molecular layers. Both the structure and dynamics of water near the interface vary with micelle size because of the changing surface ion density. The mobility of water in the interfacial layers is greatly restricted for both translational and rotational motions, in agreement with a wide range of experiments.
منابع مشابه
Amphiphilic Block Copolymer Nano-micelles: Effect of Length Ratio of the Hydrophilic Block
Block copolymer nano-micelles are especially important in cancer treatment because of their fine dimensions. In this article, three systems of amphiphilic copolymers with similar lengths and different ratios of the hydrophobic and hydrophilic chains are studied using implicit-solvent coarse-grained molecular dynamics simulations. The factor fphil is defined as the ratio of the number...
متن کاملMolecular dynamics simulations of mixed micelles modeling human bile.
Extensive molecular dynamics (MD) simulations of binary systems of phospholipids and bile salts, a model for human bile, have been performed. Recent progress in hardware and software development allows simulation of the spontaneous aggregation of the constituents into small mixed micelles, in agreement with experimental observations. The MD simulations reveal the structure of these micelles at ...
متن کاملEffects of Dimethyl Sulfoxide and Mutations on the Folding of Abeta(25-35) Peptide: Molecular Dynamics Simulations
The 25-35 fragment of the amyloid β (Aβ) peptide is a naturally occurring proteolytic by-product of its larger parent molecule that retains the amyloid characteristics and toxicity of the full length parent molecule. Aggregation of this peptide occurs rapidly in aqueous solutions and thus characterization of its folding process is very difficult. In the present study, early stages of Aβ(25–35) ...
متن کاملHow Hydrogen Bonds Affect the Growth of Reverse Micelles around Coordinating Metal Ions.
Extensive research on hydrogen bonds (H-bonds) have illustrated their critical role in various biological, chemical and physical processes. Given that existing studies are predominantly performed in aqueous conditions, how H-bonds affect both the structure and function of aggregates in organic phase is poorly understood. Herein, we investigate the role of H-bonds on the hierarchical structure o...
متن کاملMolecular Dynamics Simulations on Polymeric Nanocomposite Membranes Designed to Deliver Pipobromane Anticancer Drug
Three chitosan (CS), polyethylene glycol (PEG) and polylactic acid (PLA) nanocomposite systems containing SiO2 nanoparticles and water molecules were designed by molecular dynamics (MD) simulations to deliver pipobromane (PIP) anticancer drug in order to discover the most appropriate drug delivery system (DDS) in aqueous medium which was analogous to the human body. The density for the CS matri...
متن کامل