A combined 1H-NMR spectroscopy- and mass spectrometry-based metabolomic study of the PPAR-alpha null mutant mouse defines profound systemic changes in metabolism linked to the metabolic syndrome.
نویسندگان
چکیده
The mobilization of triacylglycerides from storage in adipocytes to the liver is a vital response to the fasting state in mammalian metabolism. This is accompanied by a rapid translational activation of genes encoding mitochondrial, microsomal, and peroxisomal beta-oxidation in the liver, in part under the regulation of peroxisome proliferator-activated receptor-alpha (PPAR-alpha). A failure to express PPAR-alpha results in profound metabolic perturbations in muscle tissue as well as the liver. These changes represent a number of deficits that accompany diabetes, dyslipidemia, and the metabolic syndrome. In this study, the metabolic role of PPAR-alpha has been investigated in heart, skeletal muscle, liver, and adipose tissue of PPAR-alpha null mice at 1 mo of age using metabolomics. To maximize the coverage of the metabolome in these tissues, (1)H-NMR spectroscopy, magic angle spinning (1)H-NMR spectroscopy, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry were used to examine metabolites in aqueous tissue extracts and intact tissue. The data were analyzed by the multivariate approaches of principal components analysis and partial least squares. Across all tissues, there was a profound decrease in glucose and a number of amino acids, including glutamine and alanine, and an increase in lactate, demonstrating that a failure to express PPAR-alpha results in perturbations in glycolysis, the citric acid cycle, and gluconeogenesis. Furthermore, despite PPAR-alpha being weakly expressed in adipose tissue, a profound metabolic perturbation was detected in this tissue.
منابع مشابه
Shockcor , Kieran Clarke and Julian L . Griffin Helen J . Atherton , Nigel J . Bailey ,
metabolism linked to the metabolic syndrome null mutant mouse defines profound systemic changes in α spectrometry-based metabolomic study of the PPAR-H-NMR spectroscopy-and mass 1 A combined You might find this additional info useful... 24 times a year (twice monthly) by the American Physiological Society, 9650 Rockville Pike, Bethesda MD systems with techniques linking genes and pathways to ph...
متن کاملMetabolomics of the interaction between PPAR-α and age in the PPAR-α-null mouse
Regulation between the fed and fasted states in mammals is partially controlled by peroxisome proliferator-activated receptor-alpha (PPAR-alpha). Expression of the receptor is high in the liver, heart and skeletal muscle, but decreases with age. A combined (1)H nuclear magnetic resonance (NMR) spectroscopy and gas chromatography-mass spectrometry metabolomic approach has been used to examine me...
متن کاملMetabolomic and Lipidomic Analysis of the Heart of Peroxisome Proliferator-Activated Receptor-γ Coactivator 1-β Knock Out Mice on a High Fat Diet
The peroxisome proliferator-activated receptor-γ coactivators (PGC-1) are transcriptional coactivators with an important role in mitochondrial biogenesis and regulation of genes involved in the electron transport chain and oxidative phosphorylation in oxidative tissues including cardiac tissue. These coactivators are thought to play a key role in the development of obesity, type 2 diabetes and ...
متن کاملEvaluation of the Anticancer Effect of Xanthium Strumarium Root Extract on Human Epithelial Ovarian Cancer Cells Using 1H NMR-Based Metabolomics
Epithelial Ovarian cancer is the leading cause of cancer mortality among women all over the world. As chemotherapeutics has many side effects, researchers have focused on the potential use of medicinal plants as natural antitumor agents. Xanthium strumarium studied in this work as an herbal anticancer agent. This study aimed to evaluate the antitumor effect and metabolic alterations ca...
متن کاملMetabolomics-Based Study of Logarithmic and Stationary Phases of Promastigotes in Leishmania major by 1H NMR Spectroscopy
Background: Cutaneous leishmaniasis is one of the most important parasitic diseases in humans. In this disease, one of the responsible organisms is Leishmania major, which is transmitted by sandfly vector. There are specific differences in biochemical profiles and metabolite pathways in logarithmic and stationary phases of Leishmania parasites. In the present study, 1H NMR spectroscopy was used...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological genomics
دوره 27 2 شماره
صفحات -
تاریخ انتشار 2006