Induced pressure pumping in polymer microchannels via field-effect flow control.
نویسندگان
چکیده
Microfluidic field-effect flow control (FEFC) modifies the zeta potential of electroosmotic flow using a transverse electric field applied through the microchannel wall. Previously demonstrated in silicon-based and glass microsystems, FEFC is presented here as an elegant method for flow control in polymer-based microfluidics with a simple and low-cost fabrication process. In addition to direct FEFC flow modulation, independent transverse electric fields in connected microchannels are demonstrated to produce a differential pumping rate between the microchannels. The different electroosmotic pumping rates formed by local zeta potential control induce an internal pressure at the microchannel intersection, resulting in hydrodynamic pumping through an interconnecting field-free microchannel. Modulation of the voltages applied to the gate electrodes adjusts the magnitude and direction of the bidirectional pressure pumping, with fine resolution volume flow rates from -2 to 2 nL/min in the field-free microchannel demonstrated.
منابع مشابه
Effect of wetting on capillary pumping in microchannels
We investigate capillary pumping in microchannels both experimentally and numerically. Putting two droplets of different sizes at the in/outlet of a microchannel, there will in general be a flow from the smaller droplet to the larger one due to the Laplace pressure difference. We show that an unusual flow from a larger droplet into a smaller one is possible by manipulating the wetting propertie...
متن کاملElectrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson-Boltzmann method.
The electrokinetic pumping characteristics of nanoscale charged porous media packed in microchannels are investigated using a mesoscopic evolution method. When the pore size of porous media is comparable to the thickness of electric double layer, the effects of particle surface potentials on the bulk electric potential distribution will not be negligible. The lattice Poisson-Boltzmann method pr...
متن کاملA NUMERICAL STUDY OF SINGLE-PHASE FORCED CONVECTIVE HEAT TRANSFER WITH FLOW FRICTION IN MICROCHANNELS (RESEARCH NOTE)
Three-dimensional simulations of the single-phase laminar flow and forced convective heat transfer of water in microchannels with small rectangular sections having specific hydraulic diameters and distinct geometric configurations were investigated numerically. The numerical results indicated that the laminar heat transfer was to be dependent upon the aspect ratio and the ratio of the hydraulic...
متن کاملPropionic acid extraction in a microfluidic system: simultaneous effects of channel diameter and fluid flow rate on the flow regime and mass transfer
In this work, extraction of propionic acid from the aqueous phase to the organic phase (1-octanol) was performed in T-junction microchannels and effects of channel diameter and fluid flow rate on the mass transfer characteristics were investigated. The two-phase flow patterns in studied microchannels with 0.4 and 0.8 mm diameters were observed. Weber number and surface-to-volume ratio were ca...
متن کاملSingle-Phase Flow and Heat Transport and Pumping Considerations in Microchannel Heat Sinks
Microchannel heat sinks are widely regarded as being amongst the most effective heat removal techniques from space-constrained electronic devices. However, the fluid flow and heat transfer in microchannels is not fully understood. The pumping requirements for flow through microchannels are also very high and none of the micropumps in the literature are truly suitable for this application. Resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 76 7 شماره
صفحات -
تاریخ انتشار 2004