Testing against a high-dimensional alternative in the generalized linear model: asymptotic type I error control
نویسندگان
چکیده
Testing a low-dimensional null hypothesis against a high-dimensional alternative in a generalized linear model may lead to a test statistic that is a quadratic form in the residuals under the null model. Using asymptotic arguments, we show that the distribution of such a test statistic can be approximated by a ratio of quadratic forms in normal variables, for which algorithms are readily available. For generalized linear models, the asymptotic distribution shows good control of type I error for moderate to small samples, even when the number of covariates in the model far exceeds the sample size.
منابع مشابه
Estimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring
This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...
متن کاملTESTING FOR AUTOCORRELATION IN UNEQUALLY REPLICATED FUNCTIONAL MEASUREMENT ERROR MODELS
In the ordinary linear models, regressing the residuals against lagged values has been suggested as an approach to test the hypothesis of zero autocorrelation among residuals. In this paper we extend these results to the both equally and unequally replicated functionally measurement error models. We consider the equally and unequally replicated cases separately, because in the first case the re...
متن کاملEstimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data
This paper considers an Extended Generalized Half Logistic distribution. We derive some properties of this distribution and then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and the new method of minimum spacing distance estimator based on complete data. Also, maximum likelihood equations for estimating the parameters based on Type-I and Typ...
متن کاملGeneralized Neyman–Pearson optimality of empirical likelihood for testing parameter hypotheses
This paper studies the Generalized Neyman–Pearson (GNP) optimality of empirical likelihood-based tests for parameter hypotheses. The GNP optimality focuses on the large deviation errors of tests, i.e., the convergence rates of the type I and II error probabilities under fixed alternatives. We derive (i) the GNP optimality of the empirical likelihood criterion (ELC) test against all alternatives...
متن کاملCONSTANT STRESS ACCELERATED LIFE TESTING DESIGNWITH TYPE-II CENSORING SCHEME FOR PARETO DISTRIBUTION USING GEOMETRIC PROCESS
In many of the studies concerning Accelerated life testing (ALT), the log linear function between life and stress which is just a simple re-parameterization of the original parameter of the life distribution is used to obtain the estimates of original parameters but from the statistical point of view, it is preferable to work with the original parameters instead of developing inferences for the...
متن کامل