1 6 Ju n 20 06 A matrix approach to the computation of quadrature formulas on the unit circle 1 Maŕıa
نویسندگان
چکیده
In this paper we consider a general sequence of orthogonal Laurent polynomials on the unit circle and we first study the equivalences between recurrences for such families and Szegő’s recursion and the structure of the matrix representation for the multiplication operator in Λ when a general sequence of orthogonal Laurent polynomials on the unit circle is considered. Secondly, we analyze the computation of the nodes of the Szegő quadrature formulas by using Hessenberg and five-diagonal matrices. Numerical examples concerning the family of Rogers-Szegő q-polynomials are also analyzed.
منابع مشابه
Matrix methods for quadrature formulas on the unit circle. A survey
In this paper we give a survey of some results concerning the computation of quadrature formulas on the unit circle. Like nodes and weights of Gauss quadrature formulas (for the estimation of integrals with respect to measures on the real line) can be computed from the eigenvalue decomposition of the Jacobi matrix, Szegő quadrature formulas (for the approximation of integrals with respect to me...
متن کاملQuadrature Formulas on the Unit Circle and Two-point Pade Approximation
In this paper our aim is to estimate integrals of the form [,"if} = J~... f(ei9)dl-£(8) where 1-£ is, in general a complex measure. We consider quadrature formulas like [n if} = L:7=1 Aj,nf(xj,n) with n distinct nodes Xj,n on the unit circle and so that [,"if} = [n{f} for any f E 'Rn (a certain subspace of Laurent polynomials with dimension n). Under appropriate assumptions on the function f we...
متن کاملPositive trigonometric quadrature formulas and quadrature on the unit circle
We give several descriptions of positive quadrature formulas which are exact for trigonometric-, respectively, Laurent polynomials of degree less or equal to n − 1 − m, 0 ≤ m ≤ n − 1. A complete and simple description is obtained with the help of orthogonal polynomials on the unit circle. In particular it is shown that the nodes polynomial can be generated by a simple recurrence relation. As a ...
متن کاملSzegö quadrature formulas for certain Jacobi-type weight functions
In this paper we are concerned with the estimation of integrals on the unit circle of the form ∫ 2π 0 f(eiθ)ω(θ)dθ by means of the so-called Szegö quadrature formulas, i.e., formulas of the type ∑n j=1 λjf(xj) with distinct nodes on the unit circle, exactly integrating Laurent polynomials in subspaces of dimension as high as possible. When considering certain weight functions ω(θ) related to th...
متن کاملQuadrature formulas on the unit circle with prescribed nodes and maximal domain of validity
In this paper we investigate the Szegő-Radau and Szegő-Lobatto quadrature formulas on the unit circle. These are (n + m)-point formulas for which m nodes are fixed in advance, with m = 1 and m = 2 respectively, and which have a maximal domain of validity in the space of Laurent polynomials. That means that the free parameters (free nodes and positive weights) are chosen such that the quadrature...
متن کامل