Almost sure convergence of weighted sums of independent random variables
نویسندگان
چکیده
Let (Ω,F ,P) be a probability space, and let {Xn} be a sequence of integrable centered i.i.d. random variables. In this paper we consider what conditions should be imposed on a complex sequence {bn} with |bn| → ∞, in order to obtain a.s. convergence of P n Xn bn , whenever X1 is in a certain class of integrability. In particular, our condition allows us to generalize the rate obtained by Marcinkiewicz and Zygmund when E[|X1|] < ∞ for some 1 < p < 2. When applied to weighted averages, our result strengthens the SLLN of Jamison, Orey, and Pruitt in the case X1 is symmetric. An analogous question is studied for {Xn} an Lp-bounded martingale difference sequence. An extension of Azuma’s SLLN for weighted averages of uniformly bounded martingale difference sequences is also presented. Applications are made also to modulated averages and to strong consistency of least squares estimators in a linear regression. The main tool for the general approach is (a generalization of) the counting function introduced by Jamison et al. for the SLLN for weighted averages.
منابع مشابه
The Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables
In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of...
متن کاملTHE ALMOST SURE CONVERGENCE OF WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
In this paper we study the almost universal convergence of weighted sums for sequence {x ,n } of negatively dependent (ND) uniformly bounded random variables, where a, k21 is an may of nonnegative real numbers such that 0(k ) for every ?> 0 and E|x | F | =0 , F = ?(X ,…, X ) for every n>l.
متن کاملON THE ALMOSTLY SURE CONVERGENCE OF THE SEQUENCE D_P,Q
In this paper, we will discuss the concept of almost sure convergence for specic groups of fuzzyrandom variables. For this purpose, we use the type of generalized Chebyshev inequalities.Moreover, we show the concept of almost sure convergence of weighted average pairwise NQDof fuzzy random variables.
متن کاملStrong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables
We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.
متن کاملComplete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables
Let be a sequence of arbitrary random variables with and , for every and be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on and sequence .
متن کاملSome Strong Limit Theorems for Weighted Product Sums of "055D-Mixing Sequences of Random Variables
We study almost sure convergence for ρ̃-mixing sequences of random variables. Many of the previous results are our special cases. For example, the authors extend and improve the corresponding results of Chen et al. 1996 and Wu and Jiang 2008 . We extend the classical Jamison convergence theorem and theMarcinkiewicz strong law of large numbers for independent sequences of random variables to ρ̃-mi...
متن کامل