Behavioral effects on rats of high strength magnetic fields generated by a resistive electromagnet.
نویسندگان
چکیده
It has been reported previously that exposure to static high magnetic fields of 7 T or above in superconducting magnets has behavioral effects on rats. In particular, magnetic field exposure acutely but transiently suppressed rearing and induced walking in tight circles; the direction of circular locomotion was dependent on the rats' orientation within the magnet. Furthermore, when magnet exposure was paired with consumption of a palatable, novel solution, rats acquired a persistent taste aversion. In order to confirm these results under more controlled conditions, we exposed rats to static magnetic fields of 4 to 19.4 T in a 189 mm bore, 20 T resistive magnet. By using a resistive magnet, field strengths could be arbitrary varied from -19.4 to 19.4 T within the same bore. Rearing was suppressed after exposure to 4 T and above; circling was observed after 7 T and above. Conditioned taste aversion was acquired after 14 T and above. The effects of the magnetic fields were dependent on orientation. Exposure to +14 T induced counter-clockwise circling, while exposure to -14 T induced clockwise circling. Exposure with the rostral-caudal axis of the rat perpendicular to the magnetic field produced an attenuated behavioral response compared to exposure with the rostral-caudal axis parallel to the field. These results in a single resistive magnet confirm and extend our earlier findings using multiple superconducting magnets. They demonstrate that the behavioral effects of exposure within large magnets are dependent on the magnetic field, and not on non-magnetic properties of the machinery. Finally, the effects of exposure to 4 T are clinically relevant, as 4 T magnetic fields are commonly used in functional MRI assays.
منابع مشابه
Does Exposure to Static Magnetic Fields Generated by Magnetic Resonance Imaging Scanners Raise Safety Problems for Personnel?
MRI workers are occupationally exposed to static and time-varying gradient magnetic fields. While the 24-hour time-averaged exposure to static magnetic fields is about a few mT, the maximum static field strength can be as high as 500 mT during patient setup. Over the past several years, our laboratory has performed extensive experiments on the health effects of exposure of animal models and h...
متن کاملBehavioral effects of high-strength static magnetic fields on rats.
Advances in magnetic resonance imaging are driving the development of more powerful and higher-resolution machines with high-strength static magnetic fields. The behavioral effects of high-strength magnetic fields are largely uncharacterized, although restraint within a 9.4 T magnetic field is sufficient to induce a conditioned taste aversion (CTA) and induce brainstem expression of c-Fos in ra...
متن کاملHigh-resolution, >1 GHz NMR in unstable magnetic fields.
Resistive or hybrid magnets can achieve substantially higher fields than those available in superconducting magnets, but their spatial homogeneity and temporal stability are unacceptable for high-resolution NMR. We show that modern stabilization and shimming technology, combined with detection of intermolecular zero-quantum coherences (iZQCs), can remove almost all of the effects of inhomogenei...
متن کاملP-104: Effects of Prenatal Exposure to Electromagnetic Fields on Fertility of F1 Generation in In Vitro
Background: Electromagnetic fields interact with human tissues and may have adverse effects on fertility and reproduction. During the last decades there has been a growing concern on the effects of electromagnetic radiations on biological systems in general. Radiation risks from electromagnetic fields generated by processes such as reduced fertility and a significant decrease in implantation ra...
متن کاملDesign and Fabrication of Helmholtz Coils to Study the Effects of Pulsed Electromagnetic Fields on the Healing Process in Periodontitis: Preliminary Animal Results
Background: Effects of electromagnetic fields on healing have been investigated for centuries. Substantial data indicates that exposure to electromagnetic field can lead to enhanced healing in both soft and hard tissues. Helmholtz coil is a device that generates pulsed electromagnetic fields. Objective: In this study, a pair of Helmholtz coils for enhancing thehealing process in periodontitis w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiology & behavior
دوره 86 3 شماره
صفحات -
تاریخ انتشار 2005