Genetic Connectivity between North and South Mid-Atlantic Ridge Chemosynthetic Bivalves and Their Symbionts
نویسندگان
چکیده
Transform faults are geological structures that interrupt the continuity of mid-ocean ridges and can act as dispersal barriers for hydrothermal vent organisms. In the equatorial Atlantic Ocean, it has been hypothesized that long transform faults impede gene flow between the northern and the southern Mid-Atlantic Ridge (MAR) and disconnect a northern from a southern biogeographic province. To test if there is a barrier effect in the equatorial Atlantic, we examined phylogenetic relationships of chemosynthetic bivalves and their bacterial symbionts from the recently discovered southern MAR hydrothermal vents at 5°S and 9°S. We examined Bathymodiolus spp. mussels and Abyssogena southwardae clams using the mitochondrial cytochrome c oxidase subunit I (COI) gene as a phylogenetic marker for the hosts and the bacterial 16S rRNA gene as a marker for the symbionts. Bathymodiolus spp. from the two southern sites were genetically divergent from the northern MAR species B. azoricus and B. puteoserpentis but all four host lineages form a monophyletic group indicating that they radiated after divergence from their northern Atlantic sister group, the B. boomerang species complex. This suggests dispersal of Bathymodiolus species from north to south across the equatorial belt. 16S rRNA genealogies of chemoautotrophic and methanotrophic symbionts of Bathymodiolus spp. were inconsistent and did not match the host COI genealogy indicating disconnected biogeography patterns. The vesicomyid clam Abyssogena southwardae from 5°S shared an identical COI haplotype with A. southwardae from the Logatchev vent field on the northern MAR and their symbionts shared identical 16S phylotypes, suggesting gene flow across the Equator. Our results indicate genetic connectivity between the northern and southern MAR and suggest that a strict dispersal barrier does not exist.
منابع مشابه
Colonization of organic substrates deployed in deep-sea reducing habitats by symbiotic species and associated fauna.
In this study, our goal was to test whether typical vent/seep organisms harbouring symbionts or not, would be able to settle on organic substrates deployed in the vicinity of chemosynthetic ecosystems. Since 2006, a series of novel standardized colonization devices (CHEMECOLI: CHEMosynthetic Ecosystem COlonization by Larval Invertebrates) filled with three types of substrates (wood, alfalfa and...
متن کاملHigh connectivity across the fragmented chemosynthetic ecosystems of the deep Atlantic Equatorial Belt: efficient dispersal mechanisms or questionable endemism?
Chemosynthetic ecosystems are distributed worldwide in fragmented habitats harbouring seemingly highly specialized communities. Yet, shared taxa have been reported from highly distant chemosynthetic communities. These habitats are distributed in distinct biogeographical regions, one of these being the so-called Atlantic Equatorial Belt (AEB). Here, we combined genetic data (COI) from several ta...
متن کاملDeep-Water Chemosynthetic Ecosystem Research during the Census of Marine Life Decade and Beyond: A Proposed Deep-Ocean Road Map
The ChEss project of the Census of Marine Life (2002-2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equa...
متن کاملChemosynthetic bacteria found in bivalve species from mud volcanoes of the Gulf of Cadiz.
As in other cold seeps, the dominant bivalves in mud volcanoes (MV) from the Gulf of Cadiz are macrofauna belonging to the families Solemyidae (Acharax sp., Petrasma sp.), Lucinidae (Lucinoma sp.), Thyasiridae (Thyasira vulcolutre) and Mytilidae (Bathymodiolus mauritanicus). The delta(13)C values measured in solemyid, lucinid and thyasirid specimens support the hypothesis of thiotrophic nutriti...
متن کاملLateral symbiont acquisition in a maternally transmitted chemosynthetic clam endosymbiosis.
Deep-sea clams of the family Vesicomyidae live in symbiosis with intracellular chemosynthetic bacteria. These symbionts are transmitted maternally (vertically) between host generations and should therefore show a pattern of genetic variation paralleling that of the cotransmitted host mitochondrion. However, instances of lateral (nonvertical) symbiont acquisition could still occur, thereby decou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012