Dirty Pixels: Optimizing Image Classification Architectures for Raw Sensor Data
نویسندگان
چکیده
Real-world sensors suffer from noise, blur, and other imperfections that make high-level computer vision tasks like scene segmentation, tracking, and scene understanding difficult. Making highlevel computer vision networks robust is imperative for real-world applications like autonomous driving, robotics, and surveillance. We propose a novel end-to-end differentiable architecture for joint denoising, deblurring, and classification that makes classification robust to realistic noise and blur. The proposed architecture dramatically improves the accuracy of a classification network in low light and other challenging conditions, outperforming alternative approaches such as retraining the network on noisy and blurry images and preprocessing raw sensor inputs with conventional denoising and deblurring algorithms. The architecture learns denoising and deblurring pipelines optimized for classification whose outputs differ markedly from those of state-of-the-art denoising and deblurring methods, preserving fine detail at the cost of more noise and artifacts. Our results suggest that the best low-level image processing for computer vision is different from existing algorithms designed to produce visually pleasing images. The principles used to design the proposed architecture easily extend to other high-level computer vision tasks and image formation models, providing a general framework for integrating low-level and high-level image processing.
منابع مشابه
Blemish detection in camera production testing using fast difference filtering
In the camera manufacturing, special methods are needed to detect blemishes occurring on the camera sensor pixels. A blemish is referred as a region of pixels in the camera sensor that are somewhat darker than the background. The blemishes are difficult to detect accurately, but on the other hand, they cause a significant reduction in camera quality. We present a novel filtering method for the ...
متن کاملRemote Sensing Satellite Image Processing Techniques for Image Classification: A Comprehensive Survey
This paper is a brief survey of advance technological aspects of Digital Image Processing which are applied to remote sensing images obtained from various satellite sensors. In remote sensing, the image processing techniques can be categories in to four main processing stages: Image pre-processing, Enhancement, Transformation and Classification. Image pre-processing is the initial processing wh...
متن کاملیک روش جدید افزایش دقت مکانی تصاویر سنجش از دور با استفاده از جدول جستجو
Different methods have been proposed to increase the image spatial resolution by mixed pixels decomposition. These methods can be divided into two groups. Some research have been attempted to obtain percentages of sub pixels and the other try to obtain their locations. These methods and their problems will be examined in this study. Common methods are reviewed with more emphasis. Finally, a new...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملLand Cover Classification Using Hidden Markov Models
This paper, proposed a classification approach that utilizes the high recognition ability of Hidden Markov Models (HMM s) to perform high accuracy of classification by exploiting the spatial inter pixels dependencies ( i.e. the context ) as well as the spectral information. Applying unsupervised classification to remote sensing images can provide benefits in converting the raw image data into u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1701.06487 شماره
صفحات -
تاریخ انتشار 2017