ar X iv : 0 90 9 . 25 33 v 1 [ m at h . C V ] 1 4 Se p 20 09 TOPOLOGICAL STABLE RANK OF H ∞ ( Ω ) FOR CIRCULAR DOMAINS Ω

نویسندگان

  • BRETT D. WICK
  • B. D. WICK
چکیده

Let Ω be a circular domain, that is, an open disk with finitely many closed disjoint disks removed. Denote by H(Ω) the Banach algebra of all bounded holomorphic functions on Ω, with pointwise operations and the supremum norm. We show that the topological stable rank of H(Ω) is equal to 2. The proof is based on Suarez’s theorem that the topological stable rank of H(D) is equal to 2, where D is the unit disk. We also show that for domains symmetric to the real axis, the Bass and topological stable ranks of the real symmetric algebra H R (Ω) are 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 4 . 09 09 v 1 [ m at h . FA ] 6 A pr 2 00 9 On Sobolev extension domains in R

We describe a class of Sobolev W k p -extension domains Ω ⊂ R n determined by a certain inner subhyperbolic metric in Ω. This enables us to characterize finitely connected Sobolev W 1 p -extension domains in R 2 for each p > 2 .

متن کامل

ar X iv : m at h - ph / 0 40 90 62 v 1 2 3 Se p 20 04 A remark on rational isochronous potentials

We consider the rational potentials of the one-dimensional mechanical systems, which have a family of periodic solutions with the same period (isochronous potentials). We prove that up to a shift and adding a constant all such potentials have the form U (x) = ω 2 x 2 or U (x) = 1 4 ω 2 x 2 + c 2 x −2 .

متن کامل

ω-NARROWNESS AND RESOLVABILITY OF TOPOLOGICAL GENERALIZED GROUPS

Abstract. A topological group H is called ω -narrow if for every neighbourhood V of it’s identity element there exists a countable set A such that V A = H = AV. A semigroup G is called a generalized group if for any x ∈ G there exists a unique element e(x) ∈ G such that xe(x) = e(x)x = x and for every x ∈ G there exists x − 1 ∈ G such that x − 1x = xx − 1 = e(x). Also le...

متن کامل

ar X iv : 0 90 2 . 32 69 v 1 [ m at h - ph ] 1 9 Fe b 20 09 Averaging in scattering problems

We consider the scattering that is described by the equation (−∆ x + q(x, y) is a periodic function of y, q and f have compact supports with respect to x. We are interested in the solution satisfying the radiation condition at infinity and describe the asymptotic behavior of the solution as ǫ → 0. In addition, we find the asymptotic behavior of the scattering amplitude of the plain wave. Either...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009