Periodic Autoregressive Conditional
نویسنده
چکیده
Most high-frequency asset returns exhibit seasonal volatility patterns. This article proposes a new class of models featuring periodicity in conditional heteroscedasticity explicitly designed to capture the repetitive seasonal time variation in the second-order moments. This new class of periodic autoregressive conditional heteroscedasticity, or P-ARCH, models is directly related to the class of periodic autoregressive moving average (ARMA) models for the mean. The implicit relation between periodic generalized ARCH (P-GARCH) structures and time-invariant seasonal weak GARCH processes documents how neglected autoregressive conditional heteroscedastic periodicity may give rise to a loss in forecast efficiency. The importance and magnitude of this informational loss are quantified for a variety of loss functions through the use of Monte Carlo simulation methods. Two empirical examples with daily bilateral Deutschemark/British pound and intraday Deutschemark/U.S. dollar spot exchange rates highlight the practical relevance of the new P-GARCH class of models. Extensions to discrete-time periodic representations of stochastic volatility models subject to time deformation are briefly discussed.
منابع مشابه
Testing and modelling autoregressive conditional heteroskedasticity of streamflow processes
Abstract. Conventional streamflow models operate under the assumption of constant variance or season-dependent variances (e.g. ARMA (AutoRegressive Moving Average) models for deseasonalized streamflow series and PARMA (Periodic AutoRegressive Moving Average) models for seasonal streamflow series). However, with McLeod-Li test and Engle’s Lagrange Multiplier test, clear evidences are found for t...
متن کاملForecasting Wind Power – Modeling Periodic and Non-linear Effects Under Conditional Heteroscedasticity
In this article we present an approach that enables joint wind speed and wind power forecasts for a wind park. We combine a multivariate seasonal time varying threshold autoregressive moving average (TVARMA) model with a power threshold generalized autoregressive conditional heteroscedastic (power-TGARCH) model. The modeling framework incorporates diurnal and annual periodicity modeling by peri...
متن کاملTree-based threshold modeling for short-term forecast of daily maximum ozone level
This paper proposes a simple class of threshold autoregressive model for purpose of forecasting daily maximum ozone concentrations in Southern California. Linear time series model has been widely considered in environmental modeling. However, this class of models fails to capture the nonlinearity in ozone process and the complexity of meteorological interactions with ozone. In this article, we ...
متن کاملConditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model
‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...
متن کاملImproving Forecasts of Generalized Autoregressive Conditional Heteroskedasticity with Wavelet Transform
In the study, we discussed the generalized autoregressive conditional heteroskedasticity model and enhanced it with wavelet transform to evaluate the daily returns for 1/4/2002-30/12/2011 period in Brent oil market. We proposed discrete wavelet transform generalized autoregressive conditional heteroskedasticity model to increase the forecasting performance of the generalized autoregressive cond...
متن کامل