Ag-nanoparticles-decorated NiO-nanoflakes grafted Ni-nanorod arrays stuck out of porous AAO as effective SERS substrates.
نویسندگان
چکیده
NiO-nanoflakes (NiO-NFs) grafted Ni-nanorod (Ni-NR) arrays stuck out of the porous anodic aluminum oxide (AAO) template are achieved by a combinatorial process of AAO-confined electrodeposition of Ni-NRs, selectively etching part of the AAO template to expose the Ni-NRs, wet-etching the exposed Ni-NRs in ammonia to obtain Ni(OH)2-NFs grafted onto the cone-shaped Ni-NRs, and annealing to transform Ni(OH)2-NFs in situ into NiO-NFs. By top-view sputtering, Ag-nanoparticles (Ag-NPs) are decorated on each NiO-NFs grafted Ni-NR (denoted as NiO-NFs@Ni-NR). The resultant Ag-NPs-decorated NiO-NFs@Ni-NR (denoted as Ag-NPs@NiO-NFs@Ni-NR) arrays exhibit not only strong surface-enhanced Raman scattering (SERS) activity but also reproducible SERS-signals over the whole array. It is demonstrated that the strong SERS-activity is mainly ascribed to the high density of sub-10 nm gaps (hot spots) between the neighboring Ag-NPs, the semiconducting NiO-NFs induced chemical enhancement effect, and the lightning rod effect of the cone-shaped Ni-NRs. The three-level hierarchical nanostructure arrays stuck out of the AAO template can be utilized to probe polychlorinated biphenyls (PCBs, a kind of global environmental hazard) with a concentration as low as 5 × 10(-6) M, showing promising potential in SERS-based rapid detection of organic environmental pollutants.
منابع مشابه
Wafer-Scale Hierarchical Nanopillar Arrays Based on Au Masks and Reactive Ion Etching for Effective 3D SERS Substrate
Two-dimensional (2D) periodic micro/nanostructured arrays as SERS substrates have attracted intense attention due to their excellent uniformity and good stability. In this work, periodic hierarchical SiO₂ nanopillar arrays decorated with Ag nanoparticles (NPs) with clean surface were prepared on a wafer-scale using monolayer Au NP arrays as masks, followed by reactive ion etching (RIE), deposit...
متن کاملAg-nanoparticle-decorated Au-fractal patterns on bowl-like-dimple arrays on Al foil as an effective SERS substrate for the rapid detection of PCBs.
Large-area Au-aggregate-assembled fractal patterns with tailored sizes and densities are achieved by sputtering Au nanoparticles on hexagonally patterned bowl-shaped-dimples on Al foil and subsequent annealing. After decorating with much smaller Ag nanoparticles, the resultant substrates exhibit an active and reproducible SERS effect.
متن کاملUltrasensitive SERS performance in 3D "sunflower-like" nanoarrays decorated with Ag nanoparticles.
Low-cost, stabilized and ultrasensitive three-dimensional (3D) hierarchical surface-enhanced Raman scattering substrates ("sunflower-like" nanoarrays decorated with Ag nanoparticles, denoted as SLNAs-Ag) have been obtained by fabricating binary colloidal crystals and then decorating with Ag nanoparticles. In order to provide a larger density of hot spots within the laser-illumination area, the ...
متن کاملNanoparticle-decorated nanocanals for surface-enhanced Raman scattering.
The surface-enhanced Raman scattering (SERS) effect is considered important for fast detection of characteristic ‘‘fingerprint’’ signatures of analytes. In the SERS effect, a substantial Raman enhancement arises on localized spots (‘‘hot spots’’) in metallic nanostructures owing to strong local electromagnetic fields associated with the surface plasmon resonances of metal nanostructures. SERS o...
متن کاملFree-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors.
We report a seed-mediated hydrothermal growth of free-standing nickel hydroxide [Ni(OH)(2)] and nickel oxide (NiO) nanoflake arrays and their implementation as electrodes for non-enzymatic glucose sensors. Ni(OH)(2) nanoflakes were converted into porous NiO nanoflakes upon thermal annealing in air at temperatures of 300 °C or above. NiO nanoflake-arrayed sensors achieve an excellent glucose sen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 8 شماره
صفحات -
تاریخ انتشار 2014