Convergence of Proximal-Like Algorithms

نویسنده

  • Marc Teboulle
چکیده

We analyze proximal methods based on entropy-like distances for the minimization of convex functions subject to nonnegativity constraints. We prove global convergence results for the methods with approximate minimization steps and an ergodic convergence result for the case of finding a zero of a maximal monotone operator. We also consider linearly constrained convex problems and establish a quadratic convergence rate result for linear programs. Our analysis allows us to simplify and extend the available convergence results for these methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

W-convergence of the proximal point algorithm in complete CAT(0) metric spaces

‎In this paper‎, ‎we generalize the proximal point algorithm to complete CAT(0) spaces and show‎ ‎that the sequence generated by the proximal point algorithm‎ $w$-converges to a zero of the maximal‎ ‎monotone operator‎. ‎Also‎, ‎we prove that if $f‎: ‎Xrightarrow‎ ‎]-infty‎, +‎infty]$ is a proper‎, ‎convex and lower semicontinuous‎ ‎function on the complete CAT(0) space $X$‎, ‎then the proximal...

متن کامل

A Class of Interior Proximal-Like Algorithms for Convex Second-Order Cone Programming

We propose a class of interior proximal-like algorithms for the second-order cone program which is to minimize a closed proper convex function subject to general second-order cone constraints. The class of methods uses a distance measure generated by a twice continuously differentiable strictly convex function on (0,+∞), and includes as a special case the entropy-like proximal algorithm [12] wh...

متن کامل

Improving an ADMM-like Splitting Method via Positive-Indefinite Proximal Regularization for Three-Block Separable Convex Minimization

Abstract. The augmented Lagrangian method (ALM) is fundamental for solving convex minimization models with linear constraints. When the objective function is separable such that it can be represented as the sum of more than one function without coupled variables, various splitting versions of the ALM have been well studied in the literature such as the alternating direction method of multiplier...

متن کامل

Graph Convergence for H(.,.)-co-Accretive Mapping with over-Relaxed Proximal Point Method for Solving a Generalized Variational Inclusion Problem

In this paper, we use the concept of graph convergence of H(.,.)-co-accretive mapping introduced by [R. Ahmad, M. Akram, M. Dilshad, Graph convergence for the H(.,.)-co-accretive mapping with an application, Bull. Malays. Math. Sci. Soc., doi: 10.1007/s40840-014-0103-z, 2014$] and define an over-relaxed proximal point method to obtain the solution of a generalized variational inclusion problem ...

متن کامل

Proximal-Like Incremental Aggregated Gradient Method with Linear Convergence under Bregman Distance Growth Conditions

We introduce a unified algorithmic framework, called proximal-like incremental aggregated gradient (PLIAG) method, for minimizing the sum of smooth convex component functions and a proper closed convex regularization function that is possibly non-smooth and extendedvalued, with an additional abstract feasible set whose geometry can be captured by using the domain of a Legendre function. The PLI...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1997