Single event multiple upset-tolerant SRAM cell designs for nano-scale CMOS technology
نویسندگان
چکیده
In this article, two soft error tolerant SRAM cells, the so-called RATF1 and RATF2, are proposed and evaluated. The proposed radiation hardened SRAM cells are capable of fully tolerating single event upsets (SEUs). Moreover, they show a high degree of robustness against single event multiple upsets (SEMUs). Over the previous SRAM cells, RATF1 and RATF2 offer lower area and power overhead. The Hspice simulation results through comparison with some prominent and state-of-the-art soft error tolerant SRAM cells show that our proposed robust SRAM cells have smaller area overhead (RAFT1 offers 58% smaller area than DICE), lower power delay product (RATF1 offers 231.33% and RATF2 offers 74.75% lower PDP compared with DICE), much more soft error robustness, and larger noise margins.
منابع مشابه
Fault and Reliability Analysis of Carbon Nano Tube Fet Sram in the Presence of Single Event Upset
Carbon nano tube devices are considered as a better replacement for CMOS technology nowadays due to its decreased sizing and increased performance. Resistive open and bridging faults play vital role in the dynamic fault analysis. These faults are important since the number of interconnects have increased. In this study we discuss the effect of open and bridging defects along with the variation ...
متن کاملUltra Low-Power Fault-Tolerant SRAM Design in 90nm CMOS Technology
.................................................................................................................................. iii TABLE OF CONTENTS ............................................................................................................... iv LIST OF FIGURES ....................................................................................................................
متن کاملA Novel circuit of SRAM Cell Against Single-Event Multiple Effects for 45nm Technology
As CMOS technology down sized into double digit nanometer ranges, variations are a serious concern due to uncertainty in devices and interconnect characteristics. The single event upset (SEU) is changing the state of a memory cell due to the strike of an energetic particle. The single event multiple effects are likely to increase in nanometer CMOS technology due to reduced device size and scali...
متن کامل12th Int'l Symposium on Quality Electronic Design
Bias Temperature Instability (BTI) causes significant threshold voltage shift in MOSFET using Hafnium-dioxide (HfO2) High-k dielectric material. Negative BTI and Positive BTI are two types of BTI effects observed in p-channel and n-channel MOSFET. BTI affects the stability and reliability of conventional six transistor (6T) SRAM design in nano-scale CMOS technology. Eight transistor (8T) and Te...
متن کاملEnhanced Fault-Tolerant Data Latches for Deep Submicron CMOS
CMOS data latches used in critical applications must be immune to soft errors such as single event upsets. Existing designs protect the stored data against errors in the internal nodes, but may be vulnerable to transient faults in the control and data lines. The problem becomes more severe as feature sizes decrease. In this paper, we enhance the Dual Interlocked Storage Cell (DICE) to withstand...
متن کامل