Write Pattern Format Algorithm (WPFA) for Reliable NAND-based SSDs

نویسندگان

  • Quan Xu
  • Thomas M. Chen
  • Pu Gong
چکیده

This paper presents and evaluates a pre-coding algorithm to reduce power consumption and improve data retention in NAND-based solid-state drives (SSD). Compared to the stateof-the-art asymmetric coding and stripe elimination algorithm (SPEA), the proposed write pattern format algorithm (WPFA) achieves better data retention while consuming less power. The hardware for WPFA is simpler and requires less circuitry. The performance of WPFA is evaluated by both computer simulations and FPGA implementation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing NAND flash-based SSDs via retention relaxation

As NAND Flash technology continues to scale down and more bits are stored in a cell, the raw reliability of NAND Flash memories degrades inevitably. To meet the retention capability required for a reliable storage system, we see a trend of longer write latency and more complex ECCs employed in an SSD storage system. These greatly impact the performance of future SSDs. In this paper, we present ...

متن کامل

Block-level Replacement Scheme Considering Re-write Probability for Solid State Drives

SSDs use multiple NAND flash memory chips as storage media and deploy large sized RAM inside it in order to maintain the FTL mapping table. The rest portion of the inner RAM can be used as buffer. The buffer absorbs the read/write requests by file systems and thus the resulting write requests to NAND flash memory is determined by the buffer replacement scheme. The block-level LRU replacement sc...

متن کامل

TN-FD-32: Enhancing SSDs With Momentum Cache

SSDs typically have higher read performance than write performance. This is especially apparent in lower-density drives containing smaller amounts of NAND die accessed in parallel. Momentum Cache addresses this inefficiency by caching nearly all writes being transferred to the SSD. The writes are transferred from the cache to the SSD during periods of lower drive activity, providing a buffer to...

متن کامل

TN-FD-32: Enhancing SSDs With Momentum Cache

SSDs typically have higher read performance than write performance. This is especially apparent in lower-density drives containing smaller amounts of NAND die accessed in parallel. Momentum Cache addresses this inefficiency by caching nearly all writes being transferred to the SSD. The writes are transferred from the cache to the SSD during periods of lower drive activity, providing a buffer to...

متن کامل

FMMU: A Hardware-Automated Flash Map Management Unit for Scalable Performance of NAND Flash-Based SSDs

NAND flash-based Solid State Drives (SSDs), which are widely used from embedded systems to enterprise servers, are enhancing performance by exploiting the parallelism of NAND flash memories. To cope with the performance improvement of SSDs, storage systems have rapidly adopted the host interface for SSDs from Serial-ATA, which is used for existing hard disk drives, to high-speed PCI express. Si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016