Lab-on-a-chip for multiplexed biosensing of residual antibiotics in milk.
نویسندگان
چکیده
A multiplexed immunoassay-based antibiotic sensing device integrated in a lab-on-a-chip format is described. The approach is multidisciplinary and involves the convergent development of a multi-antibiotic competitive immunoassay based on sensitive wavelength interrogated optical sensor (WIOS) technology and a polymer-based self-contained microfluidic cartridge. Immunoassay solutions are pressure-driven through external and concerted actuation of a single syringe pump and multiposition valve. Moreover, the use of a novel photosensitive material in a 'one step' fabrication process allowed the rapid fabrication of microfluidic components and interconnection port simultaneously. Pre-filled microfluidic cartridges were used as binary response rapid tests for the simultaneous detection of three antibiotic families - sulfonamides, fluoroquinolones and tetracyclines - in raw milk. For test interpretation, any signal lower than the threshold value obtained for the corresponding Maximum Residue Limit (MRL) concentration (100 microg L(-1)) was considered negative for a given antibiotic. The reliability of the multiplexed detection system was assessed by way of a validation test carried out on a series of six blind milk samples. A test accuracy of 95% was calculated from this experiment. The whole immunoassay procedure is fast (less than 10 minutes) and easy to handle (automated actuation).
منابع مشابه
Multiplexed inkjet functionalization of silicon photonic biosensors.
The transformative potential of silicon photonics for chip-scale biosensing is limited primarily by the inability to selectively functionalize and exploit the extraordinary density of integrated optical devices on this platform. Silicon biosensors, such as the microring resonator, can be routinely fabricated to occupy a footprint of less than 50 × 50 µm; however, chemically addressing individua...
متن کاملGiant magnetoresistive-based biosensing probe station system for multiplex protein assays.
In this study, a sensitive immune-biosensing system capable of multiplexed, real-time electrical readout was developed based on giant magnetoresistive (GMR) sensor array to detect a panel of protein biomarkers simultaneously. PAPP-A, PCSK9, and ST2 have been regarded as promising candidate biomarkers for cardiovascular diseases. Early detection of multiple biomarkers for a disease could enable ...
متن کاملDetection of real-time dynamics of drug-target interactions by ultralong nanowalls.
Detecting drug-target interactions in real-time is a powerful approach for drug discovery and analytics. We show here for the first time the ultra fast electrical real-time detection and quantification of antibiotics using a novel biohybrid nanosensor. The biomolecular sensing is performed on ultralong (mm range) high aspect ratio nanowall (50 nm width) surfaces functionalized with operator DNA...
متن کاملCorrection: Non-faradaic impedance characterization of an evaporating droplet for microfluidic and biosensing applications.
Correction for 'Non-faradaic impedance characterization of an evaporating droplet for microfluidic and biosensing applications' by Piyush Dak et al., Lab Chip, 2014, 14, 2469-2479.
متن کاملTowards autonomous lab-on-a-chip devices for cell phone biosensing.
Modern cell phones are a ubiquitous resource with a residual capacity to accommodate chemical sensing and biosensing capabilities. From the different approaches explored to capitalize on such resource, the use of autonomous disposable lab-on-a-chip (LOC) devices-conceived as only accessories to complement cell phones-underscores the possibility to entirely retain cell phones' ubiquity for distr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 9 11 شماره
صفحات -
تاریخ انتشار 2009