Reduced engraftment and wound closure of cryopreserved cultured skin substitutes grafted to athymic mice.
نویسندگان
چکیده
Cryopreservation of cultured skin substitutes is a requirement for establishment of banks of alternative materials for treatment of acute and chronic skin wounds. To determine whether cryopreservation of skin substitutes that contain cultured cells reduces their efficacy for wound closure, cell-biopolymer grafts were frozen, recovered into culture, and grafted to wounds on athymic mice. Grafts consisted of cultured human keratinocytes and fibroblasts attached to collagen-glycosaminoglycan substrates that were frozen in cell culture medium with 20% serum and 10% DMSO at a controlled rate and stored overnight in liquid nitrogen. After recovery into culture for 24 h, frozen or unfrozen (control) skin substitutes were grafted to full-thickness wounds on athymic mice. Wound area and surface electrical capacitance were measured at 2, 3, and 4 weeks after grafting at which time animals were sacrificed. Wounds were scored for presence of human cells by direct immunofluorescence staining with a monoclonal antibody to HLA-ABC. The data demonstrate that cell-biopolymer grafts are less efficacious after controlled-rate cryopreservation using 10% DMSO as a cryoprotectant. Frozen grafts at 4 weeks after surgery have significantly smaller wound areas, higher capacitance (wetter surface), and fewer healed wounds that contain human cells. The results suggest that these conditions for cryopreservation of cultured grafts reduce graft viability. Improved conditions for cryopreservation are required to maintain viability and efficacy of cultured skin substitutes after frozen storage.
منابع مشابه
Glutaraldehyde crosslinking of collagen substrates inhibits degradation in skin substitutes grafted to athymic mice.
Collagen-based implants have been described as vehicles for transplantation of cultured skin cells for treatment of burn wounds. To optimize vascularization and repair of connective tissue, collagen solubility and glutaraldehyde crosslinking were evaluated. Cultured skin substitutes consisted of human keratinocytes and fibroblasts attached to collagen-glycosaminoglycan substrates that were prep...
متن کاملVitamin C regulates keratinocyte viability, epidermal barrier, and basement membrane in vitro, and reduces wound contraction after grafting of cultured skin substitutes.
Cultured skin substitutes have become useful as adjunctive treatments for excised, full-thickness burns, but no skin substitutes have the anatomy and physiology of native skin. Hypothetically, deficiencies of structure and function may result, in part, from nutritional deficiencies in culture media. To address this hypothesis, vitamin C was titrated at 0.0, 0.01, 0.1, and 1.0 mM in a cultured s...
متن کاملSkin wound closure in athymic mice with cultured human cells, biopolymers, and growth factors.
Skin wound closure remains a major problem in acute and reconstructive skin grafting after large burns because of limited availability of donor skin. This report evaluates six protocols for preparation in vitro of skin substitutes composed of cultured human cells, biopolymers, and growth factors for wound closure. Full-thickness wounds in athymic mice treated in a single procedure with cultured...
متن کاملEpidermal lipid metabolism of cultured skin substitutes during healing of full-thickness wounds in athymic mice.
Cultured epidermal keratinocytes provide an abundant supply of biologic material for wound treatment. Because restoration of barrier function is a definitive criterion for efficacy of wound closure and depends on the lipids present in the epidermis, we analyzed lipid composition of the epidermis in cultured skin substitutes in vitro and after grafting to athymic mice. The cultured skin substitu...
متن کاملEngineered human skin substitutes undergo large-scale genomic reprogramming and normal skin-like maturation after transplantation to athymic mice.
Bioengineered skin substitutes can facilitate wound closure in severely burned patients, but deficiencies limit their outcomes compared with native skin autografts. To identify gene programs associated with their in vivo capabilities and limitations, we extended previous gene expression profile analyses to now compare engineered skin after in vivo grafting with both in vitro maturation and norm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cryobiology
دوره 35 2 شماره
صفحات -
تاریخ انتشار 1997