Neuroinflammation and α-Synuclein Dysfunction Potentiate Each Other, Driving Chronic Progression of Neurodegeneration in a Mouse Model of Parkinson’s Disease
نویسندگان
چکیده
BACKGROUND Mechanisms whereby gene-environment interactions mediate chronic, progressive neurodegenerative processes in Parkinson's disease (PD)-the second most common neurodegenerative disease-remain elusive. OBJECTIVE We created a two-hit [neuroinflammation and mutant α-synuclein (α-syn) overexpression] animal model to investigate mechanisms through which mutant α-syn and inflammation work in concert to mediate chronic PD neurodegeneration. METHODS We used an intraperitoneal injection of the inflammogen lipopolysaccharide (LPS; 3 × 106 EU/kg) to initiate systemic and brain inflammation in wild-type (WT) mice and transgenic (Tg) mice overexpressing human A53T mutant α-syn. We then evaluated nigral dopaminergic neurodegeneration, α-syn pathology, and neuroinflammation. RESULTS After LPS injection, both WT and Tg mice initially displayed indistinguishable acute neuroinflammation; however, only Tg mice developed persistent neuroinflammation, chronic progressive degeneration of the nigrostriatal dopamine pathway, accumulation of aggregated, nitrated α-syn, and formation of Lewy body-like inclusions in nigral neurons. Further mechanistic studies indicated that 4-week infusion of two inhibitors of inducible nitric oxide synthase and NADPH oxidase, major free radical-generating enzymes in activated microglia, blocked nigral α-syn pathology and neurodegeneration in LPS-injected Tg mice. CONCLUSIONS Microglia-derived oxidative stress bridged neuroinflammation and α-syn pathogenic alteration in mediating chronic PD progression. Our two-hit animal model involving both a genetic lesion and an environmental trigger reproduced key features of PD and demonstrated synergistic effects of genetic predisposition and environmental exposures in the development of PD. The chronic progressive nature of dopaminergic neurodegeneration, which is absent in most existing PD models, makes this new model invaluable for the study of mechanisms of PD progression.
منابع مشابه
Neuroinflammation in Parkinson's Disease and Related Disorders: A Lesson from Genetically Manipulated Mouse Models of α-Synucleinopathies
Neuroinflammation in Parkinson's disease (PD) is a chronic process that is associated with alteration of glial cells, including astrocytes and microglia. However, the precise mechanisms remain obscure. To better understand neuroinflammation in PD, we focused on glial activation in α-synuclein (αS) transgenic and related model mice. In the majority of αS transgenic mice, astrogliosis was observe...
متن کاملAlpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease.
Parkinson's disease (PD) is a complex, chronic and progressive neurodegenerative disease. While the etiology of PD is likely multifactorial, the protein α-synuclein is a central component to the pathogenesis of the disease. However, the mechanism by which α-synuclein causes toxicity and contributes to neuronal death remains unclear. Mitochondrial dysfunction is also widely considered to play a ...
متن کاملP 67: The Role of Neuroinflammation in Dysfunction of Adult Hippocampal Neurogenesis
Neuroinflammation as a protective mechanism for repairing tissue damage in the central nervous system (CNS), has been classified into two types: acute and chronic. It is characterized by the activation of microglia and astrocytes and the increase levels of different chemokines and cytokines. Neuroinflammation can be harmful, and it is a common pathological feature in neurodegenerative and psych...
متن کاملTiO2 Nanoparticles as Potential Promoting Agents of Fibrillation of α-Synuclein, a Parkinson’s Disease-Related Protein
Background: In recent years, nanomaterials have been widely used in large quantities which make people bemore frequently exposed to the chemically synthesized nanoparticles (NPs). When NPs are introduced intoan organism, they may interact with a variety of cellular components with yet largely unknown pathologicalconsequences.Objective: I...
متن کاملCinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...
متن کامل