Molecular imaging of neurovascular cell death in experimental cerebral stroke by PET.
نویسندگان
چکیده
UNLABELLED Clinical molecular imaging of apoptosis is a highly desirable yet unmet challenge. Here we provide the first report on (18)F-labeled 5-fluoropentyl-2-methyl-malonic acid ((18)F-ML-10), a small-molecule, (18)F-labeled PET tracer for the imaging of apoptosis in vivo; this report includes descriptions of the synthesis, radiolabeling, and biodistribution of this novel apoptosis marker. We also describe the use of (18)F-ML-10 for small-animal PET of neurovascular cell death in experimental cerebral stroke in mice. METHODS (18)F-ML-10 was synthesized by nucleophilic substitution from the respective mesylate precursor, and its biodistribution was assessed in healthy rats. Permanent occlusion of the middle cerebral artery (MCA) was induced in mice, and small-animal PET was performed 24 h later. RESULTS Efficient radiolabeling of ML-10 with (18)F was achieved. Biodistribution studies with (18)F-ML-10 revealed rapid clearance from blood (half-life of 23 min), a lack of binding to healthy tissues, and rapid elimination through the kidneys. No significant tracer metabolism in vivo was observed. Clear images of distinct regions of increased uptake, selectively in the ischemic MCA territory, were obtained in the in vivo small-animal PET studies. Uptake measurements ex vivo revealed 2-fold-higher uptake in the affected hemisphere and 6- to 10-fold-higher uptake in the region of interest of the infarct. The cerebral uptake of (18)F-ML-10 was well correlated with histologic evidence of cell death. The tracer was retained in the stroke area but was cleared from blood and from intact brain areas. CONCLUSION (18)F-ML-10 is useful for noninvasive PET of neurovascular histopathology in ischemic cerebral stroke in vivo. Such an assessment may assist in characterization of the extent of stroke-related cerebral damage and in the monitoring of disease course and effect of treatment.
منابع مشابه
tPA and proteolysis in the neurovascular unit.
One of the major recommendations emerging from the NINDS Stroke Progress Review Group was to shift the emphasis from a purely neurocentric view of cell death toward a more integrative approach whereby responses in all brain cells and matrix are considered during cerebral ischemia (see Figure). The concept of the neurovascular unit (fundamentally comprising endothelium, astrocyte, and neuron) pr...
متن کاملNon-invasive Imaging and Analysis of Cerebral Ischemia in Living Rats Using Positron Emission Tomography with 18F-FDG
Stroke is the third leading cause of death among Americans 65 years of age or older(1). The quality of life for patients who suffer from a stroke fails to return to normal in a large majority of patients(2), which is mainly due to current lack of clinical treatment for acute stroke. This necessitates understanding the physiological effects of cerebral ischemia on brain tissue over time and is a...
متن کاملDysfunctional cell-cell signaling in the neurovascular unit as a paradigm for central nervous system disease.
The fundamental premise of neuroprotection has historically focused on the prevention of neuronal death. However, despite tremendous advances in the molecular biology of intraneuronal mechanisms and pathways, a clinically effective neuroprotectant does not yet exist. This problem is especially clear for stroke, for which a large number of neuroprotection trials have failed. The concept of the n...
متن کاملP39: The Neuroprotection Effect of Erythropoietin in Cerebral Ischemia
Cerebral ischemia causes death of millions people all over the world, annually and also suffering more people from neurological deficits and neuromuscular disorders. In our country, 250 to 300 people experience mild to severe stroke, daily. In this study we reviewed 120 original paper selected from PubMED database. Our keywords were erythropoietin, anti-inflammatory, stroke, neuropathy and cere...
متن کاملNLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke.
Although the innate immune response to induce postischemic inflammation is considered as an essential step in the progression of cerebral ischemia injury, the role of innate immunity mediator NLRP3 in the pathogenesis of ischemic stroke is unknown. In this study, focal ischemia was induced by middle cerebral artery occlusion in NLRP3(-/-), NOX2(-/-), or wild-type (WT) mice. By magnetic resonanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nuclear medicine : official publication, Society of Nuclear Medicine
دوره 49 9 شماره
صفحات -
تاریخ انتشار 2008