Improving Collaborative Filtering Algorithms: Sentiment-based Approach in Social Network

نویسندگان

  • Firas Ben Kharrat
  • Aymen Elkhlifi
  • Rim Faiz
چکیده

86 Byzantine Fault-Tolerant Architecture in Cloud Data Management; Mohammed A. AlZain, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia Alice S. Li, La Trobe Business School, La Trobe University, Bundoora, Australia Ben Soh, School of Engineering and Mathematical Sciences, La Trobe University, Bundoora, Australia Mehedi Masud, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis

Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...

متن کامل

Sentiment Prediction Using Collaborative Filtering

Learning sentiment models from short texts such as tweets is a notoriously challenging problem due to very strong noise and data sparsity. This paper presents a novel, collaborative filtering-based approach for sentiment prediction in twitter conversation threads. Given a set of sentiment holders and sentiment targets, we assume we know the true sentiments for a small fraction of holder-target ...

متن کامل

A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM

Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...

متن کامل

Intelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering

During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...

متن کامل

Effective Constraint based Clustering Approach for Collaborative Filtering Recommendation using Social Network Analysis

ISSN 2250 – 107X | © 2011 Bonfring Abstract--Recommender system helps people to find information or items that they needed. Collaborative Filtering (CF) is an eminent technique in recommender systems. CF uses relationships between users and recommends items to the active user based on the ratings of his/her neighbors. But, there are several drawbacks in CF like data sparsity problem, where user...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJKSR

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016