Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization.

نویسندگان

  • Carlos Rodriguez-Navarro
  • Manuel Rodriguez-Gallego
  • Koutar Ben Chekroun
  • Maria Teresa Gonzalez-Muñoz
چکیده

Increasing environmental pollution in urban areas has been endangering the survival of carbonate stones in monuments and statuary for many decades. Numerous conservation treatments have been applied for the protection and consolidation of these works of art. Most of them, however, either release dangerous gases during curing or show very little efficacy. Bacterially induced carbonate mineralization has been proposed as a novel and environmentally friendly strategy for the conservation of deteriorated ornamental stone. However, the method appeared to display insufficient consolidation and plugging of pores. Here we report that Myxococcus xanthus-induced calcium carbonate precipitation efficiently protects and consolidates porous ornamental limestone. The newly formed carbonate cements calcite grains by depositing on the walls of the pores without plugging them. Sonication tests demonstrate that these new carbonate crystals are strongly attached to the substratum, mostly due to epitaxial growth on preexisting calcite grains. The new crystals are more stress resistant than the calcite grains of the original stone because they are organic-inorganic composites. Variations in the phosphate concentrations of the culture medium lead to changes in local pH and bacterial productivity. These affect the structure of the new cement and the type of precipitated CaCO(3) polymorph (vaterite or calcite). The manipulation of culture medium composition creates new ways of controlling bacterial biomineralization that in the future could be applied to the conservation of ornamental stone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomineralization induced by Myxobacteria

Myxococcus xanthus is a Gram negative, non-pathogenic, common soil bacterium that belongs to the δsubdivision of the Proteobacteria. According to the data, it is demonstrated that, depending on the chemistry of the culture media, M. xanthus is able to induce the formation of phosphates (struvite, schertelite, newberyite), carbonates (calcite, Mg-calcite, vaterite) and sulfates (barite, taylorit...

متن کامل

Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation.

The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P)...

متن کامل

Comparative heavy metal biosorption study of brewery yeast and Myxococcus xanthus biomass.

The biosorption for La2+, Co2+, Mn2+, UO2(2+), Pb2+, Ag+, Zn2+, Cd2+ and Cr2+ by wet and dry biomass form Myxococcus xanthus obtained from laboratory cultures and Saccharomyces cerevisiae from the brewing industry has been studied. M. xanthus biomass was found to be the most efficient biosorbent for all of the metals assayed. However, due to the fact that S. cerevisiae is a low cost residual by...

متن کامل

Is KSHV lytic growth induced by a methylation-sensitive switch?

Myxococcus xanthus involves an extracellular NAD(P)+-containing protein. Genes Dev.9, 2964–2973 8 Kim, S.K. and Kaiser, D. (1990) C-factor: a cellcell signaling protein required for fruiting body morphogenesis of M. xanthus. Cell 61, 19–26 9 Ogawa, M. et al. (1996) FruA, a putative transcription factor essential for the development of Myxococcus xanthus. Mol. Microbiol. 22, 757–767 10 Sogaard-A...

متن کامل

Small acid-soluble proteins with intrinsic disorder are required for UV resistance in Myxococcus xanthus spores.

Bacterial sporulation in Gram-positive bacteria results in small acid-soluble proteins called SASPs that bind to DNA and prevent the damaging effects of UV radiation. Orthologs of Bacillus subtilis genes encoding SASPs can be found in many sporulating and nonsporulating bacteria, but they are noticeably absent from spore-forming, Gram-negative Myxococcus xanthus. This is despite the fact that M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 69 4  شماره 

صفحات  -

تاریخ انتشار 2003