South-American plate advance and forced Andean trench retreat as drivers for transient flat subduction episodes

نویسندگان

  • Gerben Schepers
  • Douwe J. J. van Hinsbergen
  • Wim Spakman
  • Martha E. Kosters
  • Lydian M. Boschman
  • Nadine McQuarrie
چکیده

At two trench segments below the Andes, the Nazca Plate is subducting sub-horizontally over ∼200-300 km, thought to result from a combination of buoyant oceanic-plateau subduction and hydrodynamic mantle-wedge suction. Whether the actual conditions for both processes to work in concert existed is uncertain. Here we infer from a tectonic reconstruction of the Andes constructed in a mantle reference frame that the Nazca slab has retreated at ∼2 cm per year since ∼50 Ma. In the flat slab portions, no rollback has occurred since their formation at ∼12 Ma, generating 'horse-shoe' slab geometries. We propose that, in concert with other drivers, an overpressured sub-slab mantle supporting the weight of the slab in an advancing upper plate-motion setting can locally impede rollback and maintain flat slabs until slab tearing releases the overpressure. Tear subduction re-establishes a continuous slab and allows the process to recur, providing a mechanism for the transient character of flat slabs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of a power-law mantle viscosity on trench retreat rate

S U M M A R Y The subduction of lithospheric plates is partitioned between subducting platemotion and lateral slab migration (i.e. trench retreat and advance). We use 3-D, dynamic models of subduction to address the role of a power-law mantle viscosity on subduction dynamics and, in particular, rates of trench retreat. For all numerical models tested, we find that a power-law rheology results i...

متن کامل

Pacific trench motions controlled by the asymmetric plate configuration

[1] We present a novel explanation for absolute trench-normal motions of slabs surrounding the Pacific. Rapid subduction-zone retreat on the eastern side of the Pacific and slow advance in the west can result from the large-scale asymmetric plate configuration. We use simple fluid dynamics to explain the mechanical background of this hypothesis, and we use the results of a simple finite differe...

متن کامل

Trench motion-controlled slab morphology and stress variations: Implications for the isolated 2015 Bonin Islands deep earthquake

The subducted old and cold Pacific Plate beneath the young Philippine Sea Plate at the Izu-Bonin trench over the Cenozoic hosts regional deep earthquakes. We investigate slab morphology and stress regimes under different trench motion histories with mantle convection models. Viscosity, temperature, and deviatoric stress are inherently heterogeneous within the slab, which we link to the occurren...

متن کامل

Interaction of subducted slabs with the mantle transition-zone: A regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate

Transition zone slab deformation influences Earth’s thermal, chemical, and tectonic evolution. However, the mechanisms responsible for the wide range of imaged slab morphologies remain debated. Here we use 2-D thermo-mechanical models with a mobile trench, an overriding plate, a temperature and stress-dependent rheology, and a 10, 30, or 100-fold increase in lower mantle viscosity, to investiga...

متن کامل

Cenozoic tectonics of western North America controlled by evolving width of Farallon slab.

Subduction of oceanic lithosphere occurs through two modes: subducting plate motion and trench migration. Using a global subduction zone data set and three-dimensional numerical subduction models, we show that slab width (W) controls these modes and the partitioning of subduction between them. Subducting plate velocity scales with W(2/3), whereas trench velocity scales with 1/W. These findings ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017