Remarks on Hyponormal Operators and Almost Normal Operators

نویسنده

  • VASILE LAURIC
چکیده

In 1984 M. Putinar proved that hyponormal operators are subscalar operators of order two. The proof provided a concrete structure of such operators. We will use this structure to give a sufficient condition for hyponormal operators T with trace-class commutator to admit a direct summand S so that T ⊕ S is the sum of a normal operator and a HilbertSchmidt operator. We investigate what this sufficient condition amounts to in the case of a weighted shift operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Remarks about Almost Semi-hyponormal Operators

We define the class of almost semi-hyponormal operators on a Hilbert space and provide some sufficient conditions in which such operators are almost normal, that is their self-commutator is in the trace-class. Mathematics Subject Classification: 47B20

متن کامل

On Commutators of Isometries and Hyponormal Operators

A sufficient condition is obtained for two isometries to be unitarily equivalent. Also, a new class of M-hyponormal operator is constructed

متن کامل

On the Hyponormal Property of Operators

Let $T$ be a bounded linear operator on a Hilbert space $mathscr{H}$. We say that $T$ has the hyponormal property if there exists a function $f$, continuous on an appropriate set so that $f(|T|)geq f(|T^ast|)$. We investigate the properties of such operators considering certain classes of functions on which our definition is constructed. For such a function $f$ we introduce the $f$-Aluthge tran...

متن کامل

On the Riesz Idempotent for a Class of Operators

Let A be a bounded linear operator acting on infinite dimensional separable Hilbert space H. Browder’s theorem and a-Browder’s theorem are related to an important property which has a leading role on local spectral theory: the single valued extension property see the recent monograph by Laursen and Neumann [19]. The study of operators satisfying Browder’s theorem is of significant interest, and...

متن کامل

Existence of Non-subnormal Polynomially Hyponormal Operators

In 1950, P. R. Halmos, motivated in part by the successful development of the theory of normal operators, introduced the notions of subnormality and hyponormality for (bounded) Hilbert space operators. An operator T is subnormal if it is the restriction of a normal operator to an invariant subspace; T is hyponormal if T*T > TT*. It is a simple matrix calculation to verify that subnormality impl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017